Properties and decay modes of scalars in an S_{3} symmetric model

G. Bhattacharyya (SINP), P. Leser (TU Do), H. Päs (TU Do)

Motivation - Horizontal symmetries

V Vast mass hierarchy between generations of quarks and charged leptons. Neutrino mass hierarchy can be much flatter.

- CKM matrix and neutrino mixing angles are parameters that are not predicted currently.
- PMNS matrix close to being tribimaximal.
- Horizontal symmetries have the potential to explain
- Masses, mass relations

$$
\frac{m_{\tau}}{m_{\mu}} \approx 20 \frac{m_{\mu}}{m_{e}} \approx 200
$$

- Patterns in the mixing matrices

$$
\left(V_{\mathrm{CKM}}\right)_{12} \approx\left(\frac{m_{d}}{m_{s}}\right)^{1 / 2}\left(V_{\mathrm{CKM}}\right)_{23} \approx\left(\frac{m_{s}}{m_{b}}\right)
$$

$$
\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & \text { small } \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)_{2}
$$

Phenomenology of discrete symmetries

- Discrete symmetries like $S_{3}, A_{4}, S_{4}, D_{4}, Q_{4}, D_{5}, D_{6}, Q_{6}, D_{7}, \ldots$ can be used to deduce some of these relations
through specific choice of representations
- through vacuum alignment of expectation values
- Typical predictions:
- enlarged scalar sector (masses, mixings)
- branching ratios of decays differ from SM
- FCNCs (often tree-level) in scalar decays or typical signals such as

$$
\mu \rightarrow e \gamma \quad \mu \rightarrow \text { eee } \quad \tau \rightarrow \mu \mu \mu
$$

The symmetry group S_{3}

- Symmetry group of the permutation of 3 objects. (equivalent to an equilateral triangle)
- Natural explanation of maximal atmospheric mixing in the neutrino sector
- Contains 6 elements:
rotation by $2 \pi / 3$
(312), (231)
swap two points / reflection
(132), (321), (213)

$$
1^{\prime} \times 1^{\prime}=1 \quad \text { and } \quad 2 \times 2=1+1^{\prime}+2
$$

A specific S_{3} model

- Assign SM particles to S_{3} representations:
Quark doublets

RH singlets

$$
\begin{array}{rr}
L_{1}, \ell_{1}^{c}, \ell_{2}^{c} \propto \mathbf{1} & \ell_{3}^{c} \propto \mathbf{1}^{\prime} \\
Q_{1}, u_{1}^{c}, u_{2}^{c}, d_{1}^{c}, d_{2}^{c} \propto \mathbf{1} & u_{3}^{c}, d_{3}^{c} \propto \mathbf{1}^{\prime}
\end{array}
$$

- 3 scalars for mass generation of quarks / charged leptons
- Neutrino sector separate (See-Saw Type II, 2 triplet scalars)
- Maximal atm. mixing originates in charged lepton sector

A specific S_{3} model

- Mass terms for charged leptons (quarks are treated identically):

$$
\left(\phi_{1} L_{2}+\phi_{2} L_{1}\right) \ell_{1}^{c} \quad\left(\phi_{1} L_{2}-\phi_{2} L_{1}\right) \ell_{2}^{c} \quad L_{3} \ell_{3}^{c} \phi_{3} \quad L_{3} \ell_{1}^{c} \phi_{3}
$$

(After SSB, this leads to the mass matrix:

$$
\mathcal{M}_{l}=\left(\begin{array}{ccc}
f_{4} v_{3} & f_{5} v_{3} & 0 \\
0 & f_{1} v & -f_{2} v \\
0 & f_{1} v & f_{2} v
\end{array}\right)
$$

- The specific alignment $\left\langle\phi_{1}\right\rangle=\left\langle\phi_{2}\right\rangle=v$ leads to maximal atm. mixing
- Special vacuum alignments like this are needed in most models based on discrete symmetries
- Simple in S_{3}, because model is rather simple and does „one thing well"

Scalar potential

- Most general S_{3} invariant scalar potential (only for the doublets)

$$
\begin{gathered}
V=m^{2}\left(\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2}\right)+m_{3}^{2} \phi_{3}^{\dagger} \phi_{3}+\frac{\lambda_{1}}{2}\left(\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\frac{\lambda_{2}}{2}\left(\phi_{1}^{\dagger} \phi_{1}-\phi_{2}^{\dagger} \phi_{2}\right)^{2} \\
+\lambda_{3} \phi_{1}^{\dagger} \phi_{2} \phi_{2}^{\dagger} \phi_{1}+\frac{\lambda_{4}}{2}\left(\phi_{3}^{\dagger} \phi_{3}\right)^{2}+\lambda_{5}\left(\phi_{3}^{\dagger} \phi_{3}\right)\left(\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2}\right) \\
+\lambda_{6} \phi_{3}^{\dagger}\left(\phi_{1} \phi_{1}^{\dagger}+\phi_{2} \phi_{2}^{\dagger}\right) \phi_{3}+\left[\lambda_{7} \phi_{3}^{\dagger} \phi_{1} \phi_{3}^{\dagger} \phi_{2}+\lambda_{8} \phi_{3}^{\dagger}\left(\phi_{1} \phi_{2}^{\dagger} \phi_{1}+\phi_{2} \phi_{1}^{\dagger} \phi_{2}\right)+\text { h.c. }\right]
\end{gathered}
$$

- 8 couplings and 2 mass parameters
- Parameter space constricted by conditions:
- Real, positive masses, VEV v_{3} should be larger than v, squared sum of the VEVs should be equal to squared SM Higgs VEV.

Scalar masses

- Masses for the 3 physical scalars (after minimizing the potential and diagonalizing the scalar mass matrix)
- all below 450 GeV

Couplings of the scalars to fermions

- After SSB the physical scalars couple through Yukawas.
- FCNCs on tree level emerge
- 2 scalars $h_{b, c}$ couple similarly to SM Higgs:
$h_{b, c} \rightarrow e e(u u, d d) \quad h_{b, c} \rightarrow \mu \mu(s s, c c) \quad h_{b, c} \rightarrow \tau \tau(b b, t t)$
- Additional FCNC coupling: $\quad h_{b, c} \rightarrow e \mu$
- The $3^{\text {rd }}$ scalar h_{a} only couples off-diagonally:

$$
h_{a} \rightarrow e \tau(d b, u t) \quad h_{a} \rightarrow \mu \tau(s b, c t)
$$

(These channels exist in the charged lepton / up and down quark sectors

Decays of the scalars $h_{b, c}$

Philipp Leser | Würzburg, Nov 09

Decays of the scalar h_{α}

D Dominant decay into sb or ct for low masses

- WW/ZZ large for $m_{a}>300 \mathrm{GeV}$

Other decays

- Other typical processes are
- $\mu \rightarrow$ eee

$$
\mu \rightarrow e \gamma
$$

- All many orders of magnitude below current bounds (10^{-12} for eee, 10^{-11} for ey)
- Due to the coupling structure, some very interesting benchmark decays are not allowed in this model:
, $\tau \rightarrow e \gamma$

$$
\begin{aligned}
& \tau \rightarrow \mu \gamma \\
& b \rightarrow s \gamma
\end{aligned} \quad \tau \rightarrow \mu \mu \mu
$$

- etc.

Outlook

- Many discrete symmetries on the market.
- Some are very successful in describing mixings of quarks and leptons.
- Most have enlarged scalar sectors with FCNCs.
- Scalars responsible for neutrino mass generation can enter observables through mixing or direct couplings.
- Specific decay patterns of scalars or processes with intermediate scalars might be observable in collider experiments.

Summary

- Discrete horizontal symmetries can explain the mixing angles and masses of the particles in the SM.
- Most horizontal symmetries come with an enlarged scalar sector that might be probed in colliders and which includes FCNC signals.
- A specific S_{3} model was studied:
- Explains the close-to-maximal atmospheric mixing angle in the neutrino sector naturally
- Comes with scalars that decay similar to SM Higgs except for partly large FCNC couplings

