Marco Drewes, Université catholique de Louvain

DISSIPATION IN QFT 04.11.2019 DESY AND THE HOT BIG BANG Hamburg, Germany

work in collaboration with Jin U Kang, Gilles Buldgen, Ui Ri Mun, Jong Chol Kim

Dissipation during/after inflation

Dissipation during/after inflation

This talk

• What is the rate of dissipation during inflation?

 How does the dissipation rate during reheating depend on microphysical parameters?

This talk

• What is the rate of dissipation during inflation?

Is warm inflation feasible?

 How does the dissipation rate during reheating depend on microphysical parameters?

Can one "measure" the inflaton couplings in cosmological data?

Part I: Dissipation during inflation

Previous computations

e.g. Bastero-Gil/Berera/Ramos 1207.0445

Assumed validity of the equation

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \partial_{\phi}V(\phi) = 0$$

- Computed the dissipation rate using the assumptions
 - Minkowski space propagators can be used
 - assume instantaneous equilibration in plasma
 - assume constant temperature
 - compute thermal corrections to quasiparticle properties in the ground state
 - Usually do not systematically compute corrections to *V*

Previous computations

e.g. Bastero-Gil/Berera/Ramos 1207.0445

• Assumed validity of the equation

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \partial_{\phi}V(\phi) = 0$$

OK, we checked in 1504.04444

- Computed the dissipation rate using the assumptions
 - Minkowski space propagators can be used probably OK if T >> H
 - assume instantaneous equilibration in plasma probably OK if T >> H
 - assume constant temperature to be checked...
 - compute thermal corrections to quasiparticle not OK
 properties in the ground state
 - Usually do not systematically compute corrections to *V* **not OK**

Closed Time Path Formalism

We need equation of motion for the mean field

$$\varphi(x) \equiv \langle \phi(x) \rangle$$

and propagators

$$\Delta_{\phi}^{-}(x,y) \equiv \mathbf{i} \langle [\phi(x),\phi(y) \rangle \\ \Delta_{\phi}^{+}(x,y) \equiv \frac{1}{2} \langle \{\phi(x),\phi(y)\} \rangle - \varphi(x)\varphi(y)$$

They can be derived from the 2PI effective action on Schwinger-Keldysh contour

2PI Effective Action

The 2PI effective action on the Closed Time Path reads

$$\Gamma[\varphi, \Delta] \equiv S[\varphi] + \Gamma_{\text{loop}}[\varphi, \Delta] = S[\varphi] + \Gamma_1[\varphi, \Delta] + \Gamma_2[\varphi, \Delta].$$

Up to one loop includes classical action and Coleman-Weinberg term $\Gamma_1[\varphi, \Delta] = \frac{i}{2} \operatorname{Tr} \ln \left(\Delta^{-1} \right) + \frac{i}{2} \operatorname{Tr} \left(\Delta_0^{-1}(\varphi) \Delta \right)$

with the "classical propagator"

$$i\Delta_{0,ab}^{-1}(x,y;\varphi) \equiv \left. \frac{\delta^2 S[\phi]}{\delta\phi(x)\delta\phi(y)} \right|_{\phi=\varphi}$$

and the "rest" made of diagrams with two or more loops $\Gamma_2[\varphi, \Delta]$.

The Model

We consider a scalar toy model with the classical

$$S[\phi,\chi] = \int_{\mathcal{C}} d^4x \left[rac{1}{2} \partial_\mu \phi \partial^\mu \phi - rac{m_\phi^2}{2} \phi^2 - rac{\lambda_\phi}{4!} \phi^4
ight.
onumber \ + rac{1}{2} \partial_\mu \chi \partial^\mu \chi - rac{m_\chi^2}{2} \chi^2 - rac{h}{2} \phi^2 \chi^2 - \mathcal{L}_{\chi ext{int}}
ight]$$

Now apply

$$\frac{\delta\Gamma[\varphi,\Delta]}{\delta\varphi_a(x)} = -J_a(x) - \int_z R_{ac}(x,z)\varphi_c(z) \quad \text{and} \quad \frac{\delta\Gamma[\varphi,\Delta]}{\delta\Delta_{ab}(x,y)} = -\frac{1}{2}R_{ab}(x,y)$$

and set "sources" *R* and *J* to zero.

Kadanoff Baym Equations for Propagators

$$\begin{pmatrix} \partial_{t_1}^2 + \omega_a^2(t_1; \mathbf{p}) \end{pmatrix} \Delta_{aa}^-(t_1, t_2; \mathbf{p}) = -\int_{t_2}^{t_1} dt' \, \Pi_{aa}^-(t_1, t'; \mathbf{p}) \Delta_{aa}^-(t', t_2; \mathbf{p}) , \\ \begin{pmatrix} \partial_{t_1}^2 + \omega_a^2(t_1; \mathbf{p}) \end{pmatrix} \Delta_{aa}^+(t_1, t_2; \mathbf{p}) = -\int_{t_i}^{t_1} dt' \, \Pi_{aa}^-(t_1, t'; \mathbf{p}) \Delta_{aa}^+(t', t_2; \mathbf{p}) \\ + \int_{t_i}^{t_2} dt' \, \Pi_{aa}^+(t_1, t'; \mathbf{p}) \Delta_{aa}^-(t', t_2; \mathbf{p}) .$$

where

$$egin{aligned} &\omega_{a}(t_{1};\mathbf{p})\equiv\sqrt{\mathbf{p}^{2}+(M_{a}^{ ext{tree}}(t_{1}))^{2}+\intrac{d^{3}\mathbf{q}}{(2\pi)^{3}}\,\Pi_{aa}^{0}(t_{1},t_{1};\mathbf{q})}\equiv\sqrt{\mathbf{p}^{2}+M_{a}^{2}(t_{1})} \end{aligned}$$
 with $M_{a}(t_{1})\equiv\sqrt{(M_{a}^{ ext{tree}}(t_{1}))^{2}+\intrac{d^{3}\mathbf{q}}{(2\pi)^{3}}\,\Pi_{aa}^{0}(t_{1},t_{1};\mathbf{q})}. \end{aligned}$

WKB Solutions

$$\Delta^{-}(t_{1}, t_{2}; \mathbf{p}) \simeq \frac{\sin\left(\int_{t_{2}}^{t_{1}} dt' \,\Omega_{t'}\right) e^{-\frac{1}{2} \left|\int_{t_{2}}^{t_{1}} dt' \Gamma_{t'}\right|}}{\sqrt{\Omega_{t_{1}} \,\Omega_{t_{2}}}},$$

$$\Delta^{+}(t_{1}, t_{2}; \mathbf{p}) = \frac{\cos\left(\int_{t_{2}}^{t_{1}} dt' \Omega_{t'}\right) e^{-\frac{1}{2} \left|\int_{t_{2}}^{t_{1}} dt' \Gamma_{t'}\right|}}{2\sqrt{\Omega_{t_{1}} \Omega_{t_{2}}}} \left(1 + 2f(t_{B})\right),$$

MaD/Mendizabal/Weniger 1202.1301

Quasiparticle properties are time dependent.

Dispersion relation $\Omega_t = \operatorname{Re}\hat{\Omega}$ and width $\Gamma_t = -2\operatorname{Im}\hat{\Omega}$ are obtained from $0 = \hat{\Omega}^2 - \omega^2(t; \mathbf{p}) - \tilde{\Pi}^-(t, \hat{\Omega}; \mathbf{p}),$

Occupation numbers evolve as $\partial_t f(t) = -\Gamma_t (f(t) - \overline{f}(t))$,

Equation of Motion for $\boldsymbol{\phi}$

$$\left(\Box_{x} + m_{\phi}^{2} + \frac{\lambda_{\phi}}{6}\varphi(x)^{2} + \frac{\lambda_{\phi}}{2}\Delta_{\eta}(x,x) + \frac{h}{2}\Delta_{\chi}(x,x)\right)\varphi(x) + \frac{\delta\Gamma_{2}[\varphi,\chi,\Delta_{\phi},\Delta_{\chi}]}{\delta\varphi(x)} = 0$$

Analytic solutions can be found using the "slow roll" approximation $(1)^n + (1)^n +$

$$\varphi(t')^n \simeq \varphi(t)^n + n(t'-t)\dot{\varphi}(t)\varphi(t)^{n-1}$$

For instance

$$\Delta^{+}(t,t;\mathbf{p}) \simeq \left(\frac{1+2f_B(\Omega_t)}{2\Omega_t}\right) + \left(\frac{\lambda\,\varphi(t)}{4T\,\Omega_t^2\Gamma_t(\cosh(\Omega_t/T)-1)}\right)\dot{\varphi}(t)$$

Time dependent frequencies create dissipation from "local" diagram!

Main Results

$$\ddot{\varphi}(t) + \Gamma_{\varphi}\dot{\varphi}(t) + \partial_{\varphi}\mathcal{V} = 0,$$

2-loop results: Buldgen/MaD/Kang/Kim/Mun in preparation

$$\begin{aligned} \partial_{\varphi} \mathcal{V} &= m_{\phi}^{2} \varphi(t) + \frac{\lambda_{\phi}}{3!} \varphi(t)^{3} + (\lambda_{\varphi} + h) \frac{T^{2}}{24} \varphi(t) + \partial_{\phi} \mathcal{V}_{\text{sun}} \\ \Gamma_{\varphi} &= \Gamma_{\varphi}^{\text{tad}} + \Gamma_{\varphi}^{\text{sun}} \\ \Gamma_{\varphi}^{\text{tad}} &= \frac{h^{2}}{(4\pi)^{2}} \frac{\varphi(t)^{2}}{T} \int \frac{p^{2} dp}{\omega_{\chi}^{2} \Gamma_{\chi}(\cosh(\omega_{\chi}/T) - 1)} \\ \Gamma_{\varphi}^{\text{sun}} &= \frac{h^{2}}{(4\pi)^{3}} \frac{T^{2}}{M_{\phi}} \log \frac{M_{\phi}}{M_{\chi}} \end{aligned}$$

$$\omega_a^2 = p^2 + M_a^2[\varphi, T] = p^2 + m_a^2 + \frac{g_a}{2}\varphi(t)^2 + (\lambda_a + h)T^2/24$$

Main Results

Interpretation of Γ

Summary I

- We refined the computation of *Γ* and *V* in several ways in a simple scalar model
- We find that the leading dissipation terms scales as 1/T, while warm inflation usually requires it to grow with T
- The results are not conclusive because the warm inflation literature used slightly more complicated models...
- ...and it remains to be seen what effect the corrections have in those

Part II: Dissipation after inflation

The Reheating Era

 $\ddot{\phi} + (3H + \Gamma_{\varphi})\dot{\phi} + \partial_{\phi}V(\phi) = 0$

In between: -1/3 < w < 1/3 ⇒ affects expansion history and redshifting of CMB modes!

This is not really new...

see e.g. Kinney/Riotto 2006, Martin/Ringeval 2010.

...but one may ask

Can one translate a "measurement" of Γ into a "measurement" of microphysical parameters? MaD 1511.03280

⇒ gain information about embedding of inflation mechanism into a fundamental theory!

Inflaton Decay

Consider a simple scalar interaction $g\phi\chi^2$

In vacuum, the inflaton decays via $1 \rightarrow 2$ decays

But what about the feedback of the produced particles on Γ ?

Feedback will lead to a very complicated relation between g and $\Gamma(t)$.

Mode equation for produced particles

$$\ddot{\chi}_k(t) + \left[\mathbf{k}^2 + m_{\chi}^2 + g\varphi(t)\right]\chi_k(t) = 0$$

Can are rewritten as Mathieu equation

$$\chi_k''(z) + [A_k - 2q\cos(2z)]\chi_k(z) = 0$$

with $A_k = \frac{4\omega_k^2}{m_\phi^2}$, $q = -2\frac{g}{m_\phi}\frac{\varphi_{\text{end}}}{m_\phi}$.

Mode equation for produced particles

$$\ddot{\chi}_k(t) + \left[\mathbf{k}^2 + m_{\chi}^2 + g\varphi(t)\right]\chi_k(t) = 0$$

Can are rewritten as Mathieu equation

$$\chi_k''(z) + \left[A_k - 2q\cos(2z)\right]\chi_k(z) = 0$$

with $A_k = \frac{4\omega_k^2}{m_\phi^2}$, $q = -2\frac{g}{m_\phi}\frac{\varphi_{\text{end}}}{m_\phi}$.

"broad resonance" for *q* > 1, i.e. $\tilde{g} > m_{\phi}/\Phi$

non-perturbative production of particles with momenta $k < (m_{\phi}^2 \tilde{g} \Phi)^{1/3}$

Mode equation for produced particles

$$\ddot{\chi}_k(t) + \left[\mathbf{k}^2 + m_{\chi}^2 + g\varphi(t)\right]\chi_k(t) = 0$$

Can are rewritten as Mathieu equation

$$\chi_k''(z) + \left[A_k - 2q\cos(2z)\right]\chi_k(z) = 0$$

with $A_k = \frac{4\omega_k^2}{m_\phi^2}$, $q = -2\frac{g}{m_\phi}\frac{\varphi_{\text{end}}}{m_\phi}$.

"narrow resonance" for q < 1, i.e. $\tilde{g} < m_{\phi}/\Phi$

Bose-enhanced production of particles with momenta $k = m_{\phi}/2$

Mode equation for produced particles

$$\ddot{\chi}_k(t) + \left[\mathbf{k}^2 + m_{\chi}^2 + g\varphi(t)\right]\chi_k(t) = 0$$

Can are rewritten as Mathieu equation

$$\chi_k''(z) + \left[A_k - 2q\cos(2z)\right]\chi_k(z) = 0$$

with $A_k = \frac{4\omega_k^2}{m_\phi^2}$, $q = -2\frac{g}{m_\phi}\frac{\varphi_{\text{end}}}{m_\phi}$.

"narrow resonance" for q < 1, i.e. $\tilde{g} < m_{\phi}/\Phi$

Bose-enhanced production of particles with momenta $k = m_{\phi}/2$

Mode equation for produced particles

$$\ddot{\chi}_k(t) + \left[\mathbf{k}^2 + m_{\chi}^2 + g\varphi(t)\right]\chi_k(t) = 0$$

Can are rewritten as Mathieu equation

$$\chi_k''(z) + [A_k - 2q\cos(2z)]\chi_k(z) = 0$$

with $A_k = \frac{4\omega_k^2}{m_\phi^2}$, $q = -2\frac{g}{m_\phi}\frac{\varphi_{\text{end}}}{m_\phi}$.

I) q > 1 "broad resonance" occurs II) q m > 3H "narrow resonance" dominates friction III) $q^2 m > H$ resonance efficiently reheats universe ($\Gamma > H$)

Range of Accessible Couplings

IV) Big Bang Nucleosynthesis requires T > 10 MeV when $\Gamma = H$.

Estimate reheating temperature

$$T_{\rm re} = \sqrt{\Gamma M_{pl}} \left(\frac{30}{\pi^2 g_*}\right)^{1/4}$$

This implies

$$\frac{g}{m_{\phi}} > \frac{T_{\rm BBN}}{\sqrt{m_{\phi}M_{pl}}} \pi \left(g_* \frac{64}{30}\right)^{1/4}$$

The vacuum decay rate can be used to describe reheating if

$$10^{-10} \sqrt{\frac{\text{GeV}}{m_{\phi}}} < \frac{g}{m_{\phi}} < 10^{-19} \frac{m_{\phi}}{\text{GeV}}$$

MaD 1903.09599

General Considerations

Interactions linear in \phi: Mathieu equation generally has the form

$$\chi_k''(z) + [A_k - 2q\cos(2z)]\chi_k(z) = 0$$

Previous results can e.g. be applied to

- with $y\phi\psi\psi$ Yukawa interactions
- $\frac{\frac{g}{m_{\phi}}}{\frac{g}{m_{\phi}}} \to \alpha \sqrt{2} \frac{m_{\phi}}{\Lambda}$ axion like interactions $\alpha \phi \Lambda^{-1} F_{\mu\nu} \tilde{F}^{\mu\nu}$ with

General rule: Inflaton coupling can be "measured" if $coupling < m_{\phi} / M_{pl}$ MaD 1903.09599

General Considerations

Interactions linear in \phi: Mathieu equation generally has the form

$$\chi_k''(z) + [A_k - 2q\cos(2z)]\chi_k(z) = 0$$

Previous results can e.g. be applied to

- $\frac{g}{m_{\phi}} \to y.$ $\frac{g}{m_{\phi}} \to \alpha \sqrt{2} \frac{m_{\phi}}{\Lambda}$ with $y\phi\psi\psi$ Yukawa interactions
- axion like interactions $\alpha\phi\Lambda^{-1}F_{\mu\nu}\tilde{F}^{\mu\nu}$ with

General rule: Inflaton coupling can be "measured" if $coupling < m_{\phi} / M_{pl}$ MaD 1903.09599

Interactions involving higher powers in φ**:**

q involves higher powers of ϕ , leading to stronger restrictions

Thermal Corrections?

MaD/Kang 1305.0267

Thermal vs Expansion History

Thermal corrections modify the evolution of the temperature during reheating, but the effect on the expansion history is subdominant.

Example: a Attractor E Model

$$V = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{pl}}} \right)^{2n}$$

Kallosh/Linde 2013 ...

unknowns :
$$(\Lambda, \alpha, n, g)$$

observables : (A_s, n_s, r)

- We fix *n*=1 and study different values of *α*
- *r* is uniquely determined by the spectral index
- reheating temperature is fixed by *g*

Results for $g\varphi\chi^2$ Interaction

Results for $g\varphi\chi^2$ Interaction

Results for h\u039623 Interaction

Results for h\u0396\u03972 Interaction

Results for Yukawa Interaction

Results for Yukawa Interaction

Summary II

- CMB data constrains inflaton decay rate *Γ* in a given inflation model
- For couplings linear in ϕ : constraint on Γ can be translated in constraint on inflaton coupling if coupling constant < m_{ϕ} / M_{pl}
- We have illustrated this for α attractor models
- Currently constraints are weak, but will improve with better measurements of the spectral index