Expansion by regions: an overview

Vladimir A. Smirnov

Skobeltsyn Institute of Nuclear Physics of Moscow State University

Zeuthen, October 7, 2020

Expanding a given Feynman integral in a given limit, where kinematic invariants and/or masses which essentially differ in scale.

Expanding a given Feynman integral in a given limit, where kinematic invariants and/or masses which essentially differ in scale.
For simplicity, let us consider an integral $G_{\Gamma}\left(q^{2}, m^{2}\right)$ depending on two scales, e.g., q^{2} and m^{2}, and let the limit be $t=-m^{2} / q^{2} \rightarrow 0$.

Expanding a given Feynman integral in a given limit, where kinematic invariants and/or masses which essentially differ in scale.
For simplicity, let us consider an integral $G_{\Gamma}\left(q^{2}, m^{2}\right)$ depending on two scales, e.g., q^{2} and m^{2}, and let the limit be $t=-m^{2} / q^{2} \rightarrow 0$.
Experience tells us that the expansion at $t \rightarrow 0$ has the form

$$
G_{\Gamma}(x, \varepsilon) \sim \sum_{n=n_{0}}^{\infty} \sum_{k=0}^{2 h} c_{n, k}(\varepsilon) t^{n} \log ^{k} t
$$

Expanding a given Feynman integral in a given limit, where kinematic invariants and/or masses which essentially differ in scale.
For simplicity, let us consider an integral $G_{\Gamma}\left(q^{2}, m^{2}\right)$ depending on two scales, e.g., q^{2} and m^{2}, and let the limit be $t=-m^{2} / q^{2} \rightarrow 0$.
Experience tells us that the expansion at $t \rightarrow 0$ has the form

$$
G_{\Gamma}(x, \varepsilon) \sim \sum_{n=n_{0}}^{\infty} \sum_{k=0}^{2 h} c_{n, k}(\varepsilon) t^{n} \log ^{k} t
$$

where h is the number of loops and $\varepsilon=(4-d) / 2$.

Expanding a given Feynman integral in a given limit, where kinematic invariants and/or masses which essentially differ in scale.
For simplicity, let us consider an integral $G_{\Gamma}\left(q^{2}, m^{2}\right)$ depending on two scales, e.g., q^{2} and m^{2}, and let the limit be $t=-m^{2} / q^{2} \rightarrow 0$.
Experience tells us that the expansion at $t \rightarrow 0$ has the form

$$
G_{\Gamma}(x, \varepsilon) \sim \sum_{n=n_{0}}^{\infty} \sum_{k=0}^{2 h} c_{n, k}(\varepsilon) t^{n} \log ^{k} t
$$

where h is the number of loops and $\varepsilon=(4-d) / 2$.
The expansion is often called asymptotic, i.e. the remainder of expansion after keeping terms up to t^{N} is $o\left(t^{N}\right)$.

It is very useful to consider expansion at general ε,

$$
G_{\Gamma}(x, \varepsilon) \sim \sum_{n=n_{0}}^{\infty} \sum_{k=0}^{h} \sum_{j=0}^{h} c_{n, j, k}^{\prime}(\varepsilon) t^{n-j \varepsilon} \log ^{k} t
$$

It is very useful to consider expansion at general ε,

$$
G_{\Gamma}(x, \varepsilon) \sim \sum_{n=n_{0}}^{\infty} \sum_{k=0}^{h} \sum_{j=0}^{h} c_{n, j, k}^{\prime}(\varepsilon) t^{n-j \varepsilon} \log ^{k} t
$$

There are various methods to obtain an expansion of a given Feynman integral, e.g., using a MB-representation.

It is very useful to consider expansion at general ε,

$$
G_{\Gamma}(x, \varepsilon) \sim \sum_{n=n_{0}}^{\infty} \sum_{k=0}^{h} \sum_{j=0}^{h} c_{n, j, k}^{\prime}(\varepsilon) t^{n-j \varepsilon} \log ^{k} t
$$

There are various methods to obtain an expansion of a given Feynman integral, e.g., using a MB-representation.
There are, however, two general strategies, expansion by subgraphs and expansion by regions, which provide a result in this form for any given Feynman integral, where coefficients are expressed either in graph-theoretical language, or in the language of polytopes associated with a given integral.

Expansion by regions [M. Beneke \& V.S.'98] introduced and applied in the case of threshold expansion.

Expansion by regions [M. Beneke \& V.S.'98] introduced and applied in the case of threshold expansion.

Expanding a given Feynman integral in a given limit.

Expansion by regions [M. Beneke \& V.S.'98] introduced and applied in the case of threshold expansion.

Expanding a given Feynman integral in a given limit. In the 'physical' language:

Expansion by regions [M. Beneke \& V.S.'98] introduced and applied in the case of threshold expansion.
Expanding a given Feynman integral in a given limit.
In the 'physical' language:

- Divide the space of the loop momenta into various regions and, in every region, expand the integrand in a series with respect to the parameters that are considered there small.

Expansion by regions [M. Beneke \& V.S.' 98] introduced and applied in the case of threshold expansion.
Expanding a given Feynman integral in a given limit.
In the 'physical' language:

- Divide the space of the loop momenta into various regions and, in every region, expand the integrand in a series with respect to the parameters that are considered there small.
■ Integrate the integrand, expanded in this way in each region, over the whole integration domain of the loop momenta.

Expansion by regions [M. Beneke \& V.S.' 98] introduced and applied in the case of threshold expansion.
Expanding a given Feynman integral in a given limit.
In the 'physical' language:

- Divide the space of the loop momenta into various regions and, in every region, expand the integrand in a series with respect to the parameters that are considered there small.
■ Integrate the integrand, expanded in this way in each region, over the whole integration domain of the loop momenta.
■ Set to zero any scaleless integral.

A simple example

Expansion by regions in the physical language

A simple example

$$
G\left(q^{2}, m^{2} ; d\right)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}(q-k)^{2}}
$$

A simple example

$$
G\left(q^{2}, m^{2} ; d\right)=\int \frac{d^{d} k}{\left(k^{2}-m^{2}\right)^{2}(q-k)^{2}}
$$

with $d=4-2 \varepsilon$ in the limit $m^{2} / q^{2} \rightarrow 0$.

Expansion by regions in the physical language

Two relevant regions: $k \sim q$ and $k \sim m$ (large and small loop momenta)

Two relevant regions: $k \sim q$ and $k \sim m$ (large and small loop momenta)
$k \sim q:$

$$
\begin{gathered}
\frac{1}{\left(k^{2}-m^{2}\right)^{2}} \sim \frac{1}{\left(k^{2}\right)^{2}}+\ldots \\
\frac{1}{(q-k)^{2}} \quad \text { unexpanded }
\end{gathered}
$$

Two relevant regions: $k \sim q$ and $k \sim m$ (large and small loop momenta)
$k \sim q:$

$$
\begin{gathered}
\frac{1}{\left(k^{2}-m^{2}\right)^{2}} \sim \frac{1}{\left(k^{2}\right)^{2}}+\ldots \\
\frac{1}{(q-k)^{2}} \quad \text { unexpanded }
\end{gathered}
$$

$k \sim m:$

$$
\begin{gathered}
\frac{1}{\left(k^{2}-m^{2}\right)^{2}} \quad \text { unexpanded } \\
\frac{1}{(q-k)^{2}} \sim \frac{1}{q^{2}}+\ldots
\end{gathered}
$$

$$
G\left(q^{2}, m^{2} ; d\right) \sim \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{2}(q-k)^{2}}+\frac{1}{q^{2}} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\ldots
$$

$$
\begin{aligned}
& G\left(q^{2}, m^{2} ; d\right) \sim \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{2}(q-k)^{2}}+\frac{1}{q^{2}} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\ldots \\
& \quad=i \pi^{d / 2}\left(\frac{\Gamma(1-\varepsilon)^{2} \Gamma(\varepsilon)}{\Gamma(1-2 \varepsilon)\left(-q^{2}\right)^{1+\varepsilon}}+\frac{\Gamma(\varepsilon)}{q^{2}\left(m^{2}\right)^{\varepsilon}}+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& G\left(q^{2}, m^{2} ; d\right) \sim \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{2}(q-k)^{2}}+\frac{1}{q^{2}} \int \frac{\mathrm{~d}^{d} k}{\left(k^{2}-m^{2}\right)^{2}}+\ldots \\
&=i \pi^{d / 2}\left(\frac{\Gamma(1-\varepsilon)^{2} \Gamma(\varepsilon)}{\Gamma(1-2 \varepsilon)\left(-q^{2}\right)^{1+\varepsilon}}+\frac{\Gamma(\varepsilon)}{q^{2}\left(m^{2}\right)^{\varepsilon}}+\ldots\right) \\
&=\mathrm{i} \pi^{d / 2}\left(\log \left(\frac{-q^{2}}{m^{2}}\right)+\ldots\right)
\end{aligned}
$$

[M. Beneke '98 (unpublished); V.S. 'Applied asymptotic expansions in momenta and masses', 2002]:
a toy example of a one-parametric integral

[M. Beneke '98 (unpublished); V.S. 'Applied asymptotic

 expansions in momenta and masses', 2002]: a toy example of a one-parametric integral$G(q, m, \varepsilon)=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} \mathrm{d} k \equiv \int_{0}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k$,
with $m, q>0$, in the limit $m / q \rightarrow 0$.

[M. Beneke '98 (unpublished); V.S. 'Applied asymptotic

 expansions in momenta and masses', 2002]:a toy example of a one-parametric integral
$G(q, m, \varepsilon)=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} \mathrm{d} k \equiv \int_{0}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k$,
with $m, q>0$, in the limit $m / q \rightarrow 0$. In fact, partial fractions

$$
\frac{1}{(k+m)(k+q)} \rightarrow \frac{1}{q-m}\left(\frac{1}{k+m}-\frac{1}{k+q}\right)
$$

[M. Beneke '98 (unpublished); V.S. 'Applied asymptotic

 expansions in momenta and masses', 2002]:a toy example of a one-parametric integral
$G(q, m, \varepsilon)=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} \mathrm{d} k \equiv \int_{0}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k$,
with $m, q>0$, in the limit $m / q \rightarrow 0$. In fact, partial fractions

$$
\frac{1}{(k+m)(k+q)} \rightarrow \frac{1}{q-m}\left(\frac{1}{k+m}-\frac{1}{k+q}\right)
$$

provide a simple explicit result

$$
\Gamma(1-\varepsilon) \Gamma(\varepsilon) \frac{q^{-\varepsilon}-m^{-\varepsilon}}{m-q}
$$

[M. Beneke '98 (unpublished); V.S. 'Applied asymptotic

 expansions in momenta and masses', 2002]:a toy example of a one-parametric integral

$$
G(q, m, \varepsilon)=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} \mathrm{d} k \equiv \int_{0}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k
$$

with $m, q>0$, in the limit $m / q \rightarrow 0$. In fact, partial fractions

$$
\frac{1}{(k+m)(k+q)} \rightarrow \frac{1}{q-m}\left(\frac{1}{k+m}-\frac{1}{k+q}\right)
$$

provide a simple explicit result

$$
\Gamma(1-\varepsilon) \Gamma(\varepsilon) \frac{q^{-\varepsilon}-m^{-\varepsilon}}{m-q}
$$

which can then simply be expanded at $m / q \rightarrow 0$.

Expansion by regions in the physical language

Two relevant regions: $k \sim q$ and $k \sim m$

Expansion by regions in the physical language

Two relevant regions: $k \sim q$ and $k \sim m$ $k \sim q:$

$$
\begin{aligned}
& \frac{1}{k+m} \sim \frac{1}{k}+\ldots \\
& \frac{1}{k+q} \text { unexpanded }
\end{aligned}
$$

Expansion by regions in the physical language

Two relevant regions: $k \sim q$ and $k \sim m$
$k \sim q:$

$$
k \sim m:
$$

$$
\begin{aligned}
& \frac{1}{k+m} \sim \frac{1}{k}+\ldots \\
& \frac{1}{k+q} \text { unexpanded } \\
& \frac{1}{k+m} \text { unexpanded } \\
& \frac{1}{k+q} \sim \frac{1}{q}+\ldots
\end{aligned}
$$

Two relevant regions: $k \sim q$ and $k \sim m$

$$
\begin{array}{ll}
k \sim q: & \frac{1}{k+m} \sim \frac{1}{k}+\ldots \\
k \sim m: & \frac{1}{k+q} \text { unexpanded } \\
& \frac{1}{k+m} \text { unexpanded } \\
& \frac{1}{k+q} \sim \frac{1}{q}+\ldots
\end{array}
$$

$$
G(q, m, \varepsilon) \sim \int_{0}^{\infty} \frac{k^{-1-\varepsilon}}{k+q} \mathrm{~d} k+\frac{1}{q} \int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathrm{~d} k+\ldots
$$

$$
G \rightarrow G_{s}+G_{l} \equiv \int_{0}^{\wedge} I(q, m, \varepsilon, k) \mathrm{d} k+\int_{\Lambda}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k
$$

where $m<\Lambda<q$.

$$
G \rightarrow G_{s}+G_{l} \equiv \int_{0}^{\Lambda} I(q, m, \varepsilon, k) \mathrm{d} k+\int_{\Lambda}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k
$$

where $m<\Lambda<q$.

$$
G_{I}=\int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} d k \sim \int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k
$$

where $\mathcal{T}_{x} f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)} x^{n}$,

$$
G \rightarrow G_{s}+G_{l} \equiv \int_{0}^{\Lambda} I(q, m, \varepsilon, k) \mathrm{d} k+\int_{\Lambda}^{\infty} I(q, m, \varepsilon, k) \mathrm{d} k
$$

where $m<\Lambda<q$.

$$
G_{I}=\int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} d k \sim \int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k
$$

where $\mathcal{T}_{x} f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)} x^{n}$, so that

$$
G_{l} \sim \int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+q}\left(\frac{1}{k}-\frac{m}{k^{2}}+\ldots\right)
$$

$$
G \rightarrow G_{s}+G_{l} \equiv \int_{0}^{\wedge} I(q, m, \varepsilon, k) \mathrm{d} k+\int_{\Lambda}^{\infty} l(q, m, \varepsilon, k) \mathrm{d} k
$$

where $m<\Lambda<q$.

$$
G_{l}=\int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{(k+m)(k+q)} d k \sim \int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k
$$

where $\mathcal{T}_{x} f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)} x^{n}$, so that

$$
G_{l} \sim \int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+q}\left(\frac{1}{k}-\frac{m}{k^{2}}+\ldots\right)
$$

Here one can change the order of integration and Taylor expansion.

Add and subtract the integral over $(0, \Lambda)$ which is by definition understood as the sum of integrals of the Taylor-expanded integrand:

$$
G_{l} \sim \int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k-\int_{0}^{\wedge} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k .
$$

Here each integral is evaluated in the corresponding domain of ε where it is convergent and then the result it continued analytically to a given domain, i.e. a vicinity of $\varepsilon=0$.

Add and subtract the integral over $(0, \Lambda)$ which is by definition understood as the sum of integrals of the Taylor-expanded integrand:

$$
G_{l} \sim \int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k-\int_{0}^{\wedge} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k .
$$

Here each integral is evaluated in the corresponding domain of ε where it is convergent and then the result it continued analytically to a given domain, i.e. a vicinity of $\varepsilon=0$. Similarly,

$$
G_{s} \sim \int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathcal{T}_{k} \frac{1}{k+q} \mathrm{~d} k-\int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathcal{T}_{k} \frac{1}{k+q} \mathrm{~d} k
$$

'Additional' pieces:

$$
\begin{array}{r}
-\int_{0}^{\wedge} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k=-\sum_{n=0}^{\infty}(-1)^{n} m^{n} \int_{0}^{\wedge} \frac{k^{-\varepsilon-n-1}}{k+q} \mathrm{~d} k \\
=-\sum_{n, l=0}^{\infty}(-1)^{n+l} m^{n} q^{-l-1} \int_{0}^{\wedge} k^{-\varepsilon-n+l-1} \mathrm{~d} k
\end{array}
$$

'Additional' pieces:

$$
\begin{aligned}
-\int_{0}^{\wedge} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} & \frac{1}{k+m} \mathrm{~d} k=-\sum_{n=0}^{\infty}(-1)^{n} m^{n} \int_{0}^{\wedge} \frac{k^{-\varepsilon-n-1}}{k+q} \mathrm{~d} k \\
& =-\sum_{n, l=0}^{\infty}(-1)^{n+l} m^{n} q^{-l-1} \int_{0}^{\wedge} k^{-\varepsilon-n+l-1} \mathrm{~d} k
\end{aligned}
$$

$$
\begin{array}{r}
-\int_{\Lambda}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathcal{T}_{k} \frac{1}{k+q} \mathrm{~d} k=-\sum_{l=0}^{\infty}(-1)^{l} q^{-l-1} \int_{\Lambda}^{\infty} \frac{k^{l-\varepsilon}}{k+m} d k \\
=-\sum_{n, l=0}^{\infty}(-1)^{n+l} m^{n} q^{-l-1} \int_{\Lambda}^{\infty} k^{-\varepsilon-n+l-1} \mathrm{~d} k
\end{array}
$$

The additional pieces cancel each other because

$$
\int_{0}^{\Lambda} k^{-\varepsilon-n+l-1} d k=\Lambda^{-\varepsilon-n+l}, \quad \int_{\Lambda}^{\infty} k^{-\varepsilon-n+l-1} d k=-\Lambda^{-\varepsilon-n+l}
$$

The additional pieces cancel each other because

$$
\int_{0}^{\Lambda} k^{-\varepsilon-n+l-1} d k=\Lambda^{-\varepsilon-n+l}, \quad \int_{\Lambda}^{\infty} k^{-\varepsilon-n+l-1} d k=-\Lambda^{-\varepsilon-n+l}
$$

We did not refer to the zero value of scaleless integrals

$$
\int_{0}^{\infty} k^{\lambda} d k=0 .
$$

We arrive at the expansion $G \sim M_{1} G+M_{2} G$ with

$$
\begin{aligned}
& M_{1} G=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k \\
& M_{2} G=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathcal{T}_{k} \frac{1}{k+q} \mathrm{~d} k
\end{aligned}
$$

We arrive at the expansion $G \sim M_{1} G+M_{2} G$ with

$$
\begin{aligned}
& M_{1} G=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k \\
& M_{2} G=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathcal{T}_{k} \frac{1}{k+q} \mathrm{~d} k
\end{aligned}
$$

Each resulting integral is evaluated in the corresponding domain of ε where it is convergent, with a subsequent analytic continuation to the initial domain, i.e. a vicinity of $\varepsilon=0$.

We arrive at the expansion $G \sim M_{1} G+M_{2} G$ with

$$
\begin{aligned}
& M_{1} G=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+q} \mathcal{T}_{m} \frac{1}{k+m} \mathrm{~d} k \\
& M_{2} G=\int_{0}^{\infty} \frac{k^{-\varepsilon}}{k+m} \mathcal{T}_{k} \frac{1}{k+q} \mathrm{~d} k
\end{aligned}
$$

Each resulting integral is evaluated in the corresponding domain of ε where it is convergent, with a subsequent analytic continuation to the initial domain, i.e. a vicinity of $\varepsilon=0$.
The remainder can be described as

$$
\begin{array}{r}
R^{n} G=\left(1-M_{1}^{n}\right)\left(1-M_{2}^{n}\right) G \\
=\int_{0}^{\infty} k^{-\varepsilon}\left[\left(1-\mathcal{T}_{m}^{n}\right) \frac{1}{k+m}\right]\left[\left(1-\mathcal{T}_{k}^{n}\right) \frac{1}{k+q}\right] d k
\end{array}
$$

Obtaining expansion from the remainder in the 'physical way'

Expansion by regions in the physical language

Obtaining expansion from the remainder in the 'physical way'

$$
1=1-R^{n}+R^{n}=1-\left(1-M_{1}^{n}\right)\left(1-M_{2}^{n}\right)+R^{n}
$$

Obtaining expansion from the remainder in the 'physical way'

$$
1=1-R^{n}+R^{n}=1-\left(1-M_{1}^{n}\right)\left(1-M_{2}^{n}\right)+R^{n}
$$

where

$$
1-\left(1-M_{1}^{n}\right)\left(1-M_{2}^{n}\right)=M_{1}^{n}+M_{2}^{n}-M_{1}^{n} M_{2}^{n}
$$

Obtaining expansion from the remainder in the 'physical way'

$$
1=1-R^{n}+R^{n}=1-\left(1-M_{1}^{n}\right)\left(1-M_{2}^{n}\right)+R^{n}
$$

where

$$
1-\left(1-M_{1}^{n}\right)\left(1-M_{2}^{n}\right)=M_{1}^{n}+M_{2}^{n}-M_{1}^{n} M_{2}^{n}
$$

Set scaleless integrals in $M_{1}^{n} M_{2}^{n}$ to zero to obtain

$$
G \sim M_{1}^{n} G+M_{2}^{n} G+R^{n} G
$$

Expansion by regions in the physical language

Obtaining expansion from the remainder in the mathematical way. Let $M_{i}^{n}=\sum_{j=0}^{n} M_{i}^{(j)}$ for $i=1,2$. Let $\operatorname{Re} \varepsilon<0$.

Obtaining expansion from the remainder in the mathematical way. Let $M_{i}^{n}=\sum_{j=0}^{n} M_{i}^{(j)}$ for $i=1,2$. Let $\operatorname{Re} \varepsilon<0$. Then

$$
M_{1}^{n}+M_{2}^{n}-M_{1}^{n} M_{2}^{n}=\sum_{j=0}^{n}\left(1-M_{2}^{j-1}\right) M_{1}^{(j)}+\sum_{j=0}^{n}\left(1-M_{1}^{j}\right) M_{2}^{(j)}
$$

Obtaining expansion from the remainder in the mathematical way. Let $M_{i}^{n}=\sum_{j=0}^{n} M_{i}^{(j)}$ for $i=1,2$. Let $\operatorname{Re} \varepsilon<0$. Then

$$
M_{1}^{n}+M_{2}^{n}-M_{1}^{n} M_{2}^{n}=\sum_{j=0}^{n}\left(1-M_{2}^{j-1}\right) M_{1}^{(j)}+\sum_{j=0}^{n}\left(1-M_{1}^{j}\right) M_{2}^{(j)}
$$

Then the first sum takes gives

$$
\begin{aligned}
& \int_{0}^{\infty} k^{-\varepsilon}\left[\left(1-\mathcal{T}_{k}^{j-1}\right) \frac{1}{k+q}\right] \mathcal{T}_{m}^{(j)} \frac{1}{k+m} d k \\
& \sim m^{j} \int_{0}^{\infty} k^{-\varepsilon-j-1}\left[\left(1-\mathcal{T}_{k}^{j-1}\right) \frac{1}{k+q}\right] \mathrm{d} k
\end{aligned}
$$

Expansion by regions in the physical language

$$
\int_{0}^{\infty} k^{-\varepsilon-j-1}\left[\left(1-\mathcal{T}_{k}^{j-1}\right) \frac{1}{k+q}\right] d k
$$

$$
\int_{0}^{\infty} k^{-\varepsilon-j-1}\left[\left(1-\mathcal{T}_{k}^{j-1}\right) \frac{1}{k+q}\right] d k
$$

is nothing but the analytic continuation of the integral

$$
\int_{0}^{\infty} \frac{k^{-\varepsilon-j-1}}{k+q} d k
$$

from $0<-\operatorname{Re} \varepsilon<1$ to $-j-1<\operatorname{Re} \varepsilon<-j$.

$$
\int_{0}^{\infty} k^{-\varepsilon-j-1}\left[\left(1-\mathcal{T}_{k}^{j-1}\right) \frac{1}{k+q}\right] d k
$$

is nothing but the analytic continuation of the integral

$$
\int_{0}^{\infty} \frac{k^{-\varepsilon-j-1}}{k+q} d k
$$

from $0<-\operatorname{Re} \varepsilon<1$ to $-j-1<\operatorname{Re} \varepsilon<-j$.
This reminds the analytic continuation of the distribution x_{+}^{λ} from $\operatorname{Re} \lambda>-1$ to the whole complex plane [I.M. Gelfand '55], i.e. for integrals

$$
\int_{0}^{\infty} x^{\lambda} \phi(x) \mathrm{d} x
$$

Similarly, the second sum takes the form

$$
\begin{aligned}
& \int_{0}^{\infty} k^{-\varepsilon}\left[\left(1-\mathcal{T}_{m}^{j}\right) \frac{1}{k+m}\right] \mathcal{T}_{k}^{(j)} \frac{1}{k+q} \mathrm{~d} k \\
& \quad \sim \int_{0}^{\infty} k^{-\varepsilon-j}\left[\left(1-\mathcal{T}_{m}^{j}\right) \frac{1}{k+m}\right] \mathrm{d} k
\end{aligned}
$$

Similarly, the second sum takes the form

$$
\begin{aligned}
& \int_{0}^{\infty} k^{-\varepsilon}\left[\left(1-\mathcal{T}_{m}^{j}\right) \frac{1}{k+m}\right] \mathcal{T}_{k}^{(j)} \frac{1}{k+q} \mathrm{~d} k \\
& \quad \sim \int_{0}^{\infty} k^{-\varepsilon-j}\left[\left(1-\mathcal{T}_{m}^{j}\right) \frac{1}{k+m}\right] d k
\end{aligned}
$$

and this is the analytic continuation of the integral

$$
\int_{0}^{\infty} \frac{k^{-\varepsilon-j}}{k+m} d k
$$

from $0<-\operatorname{Re} \varepsilon<1$ to $j<\operatorname{Re} \varepsilon<j+1$.

This means that we can represent the terms of expansion described by the operator $M_{1}+M_{2}-M_{1} M_{2}$ also in an equivalent way using just the sum of the operators $M_{1}+M_{2}$, with the prescription that each resulting integral is evaluated in its own domain of convergence and then the result obtained is analytically continued to a given domain.

Jantzen [B. Jantzen'11] provided detailed explanations, using one- and two-loop examples, of how this strategy works by starting from regions determined by some inequalities and covering the whole integration space of the loop momenta, then expanding the integrand and then extending integration and analyzing all the pieces which are obtained.

Jantzen [B. Jantzen'11] provided detailed explanations, using one- and two-loop examples, of how this strategy works by starting from regions determined by some inequalities and covering the whole integration space of the loop momenta, then expanding the integrand and then extending integration and analyzing all the pieces which are obtained.
An indirect proof [V.S.'90] of expansion by regions for limits typical of Euclidean space (where one has two different regions which can be called large and small).

Jantzen [B. Jantzen'11] provided detailed explanations, using one- and two-loop examples, of how this strategy works by starting from regions determined by some inequalities and covering the whole integration space of the loop momenta, then expanding the integrand and then extending integration and analyzing all the pieces which are obtained.
An indirect proof [V.S.'90] of expansion by regions for limits typical of Euclidean space (where one has two different regions which can be called large and small).
Expansion by subgraphs [K.G. Chetyrkin'88, S. Gorishny'89],

Jantzen [B. Jantzen'11] provided detailed explanations, using one- and two-loop examples, of how this strategy works by starting from regions determined by some inequalities and covering the whole integration space of the loop momenta, then expanding the integrand and then extending integration and analyzing all the pieces which are obtained.
An indirect proof [V.S.'90] of expansion by regions for limits typical of Euclidean space (where one has two different regions which can be called large and small).
Expansion by subgraphs [K.G. Chetyrkin'88, S. Gorishny'89], for example, in the off-shell large-momentum limit, i.e. where a momentum Q is considered large and momenta q_{i} as well as the masses m_{j} are small,

Jantzen [B. Jantzen'11] provided detailed explanations, using one- and two-loop examples, of how this strategy works by starting from regions determined by some inequalities and covering the whole integration space of the loop momenta, then expanding the integrand and then extending integration and analyzing all the pieces which are obtained.
An indirect proof [V.S.'90] of expansion by regions for limits typical of Euclidean space (where one has two different regions which can be called large and small).
Expansion by subgraphs [K.G. Chetyrkin'88, S. Gorishny'89], for example, in the off-shell large-momentum limit, i.e. where a momentum Q is considered large and momenta q_{i} as well as the masses m_{j} are small,

$$
G_{\Gamma} \sim \sum_{\gamma} G_{\Gamma / \gamma} \circ \mathcal{T}_{q_{\gamma}, m_{\gamma}} G_{\gamma}
$$

How to find relevant regions?

How to find relevant regions?
For limits typical of Euclidean space, these are regions of large (hard) and small (soft) momenta.

How to find relevant regions?
For limits typical of Euclidean space, these are regions of large (hard) and small (soft) momenta.
For the Regge limit and various versions of the Sudakov limit, these are hard, soft, 1-collinear, ..., ultrasoft regions.

How to find relevant regions?
For limits typical of Euclidean space, these are regions of large (hard) and small (soft) momenta.

For the Regge limit and various versions of the Sudakov limit, these are hard, soft, 1-collinear,, ultrasoft regions.
For the threshold limit $y=m^{2}-q^{2} / 4 \rightarrow 0$, one has
(hard), $\quad k_{0} \sim \sqrt{q^{2}}, \vec{k} \sim \sqrt{q^{2}}$, (soft) $, \quad k_{0} \sim \sqrt{y}, \vec{k} \sim \sqrt{y}$,
(potential), $\quad k_{0} \sim y / \sqrt{q^{2}}, \vec{k} \sim \sqrt{y}$,
(ultrasoft) $, \quad k_{0} \sim y / \sqrt{q^{2}}, \vec{k} \sim y / \sqrt{q^{2}}$.
where $q=\left(q_{0}, \overrightarrow{0}\right)$.

Expansion by regions in Feynman parameters [V.S.'99], also formulated in the physical language.

Expansion by regions in Feynman parameters [V.S.'99], also formulated in the physical language.
Feynman parametric representation for a Feynman integral with propagators $1 /\left(-p^{2}+m_{l}^{2}-i 0\right)$

Expansion by regions in Feynman parameters [V.S.' '99], also formulated in the physical language.
Feynman parametric representation for a Feynman integral with propagators $1 /\left(-p^{2}+m_{l}^{2}-i 0\right)$

$$
\int_{0}^{\infty} \cdots \int_{0}^{\infty} \delta\left(\sum x_{i}-1\right) U^{n-(h+1) d / 2} F^{h d / 2-n} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}
$$

Expansion by regions in Feynman parameters [V.S.'99], also formulated in the physical language.
Feynman parametric representation for a Feynman integral with propagators $1 /\left(-p^{2}+m_{l}^{2}-i 0\right)$
$\int_{0}^{\infty} \cdots \int_{0}^{\infty} \delta\left(\sum x_{i}-1\right) U^{n-(h+1) d / 2} F^{h d / 2-n} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}$ where n is the number of lines (edges), h is the number of loops (independent circuits) of the graph,

$$
F=-V+U \sum m_{l}^{2} x_{l}
$$

Expansion by regions in Feynman parameters [V.S.'99], also formulated in the physical language.
Feynman parametric representation for a Feynman integral with propagators $1 /\left(-p^{2}+m_{l}^{2}-i 0\right)$
$\int_{0}^{\infty} \cdots \int_{0}^{\infty} \delta\left(\sum x_{i}-1\right) U^{n-(h+1) d / 2} F^{h d / 2-n} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}$
where n is the number of lines (edges), h is the number of loops (independent circuits) of the graph,

$$
F=-V+U \sum m_{l}^{2} x_{l}
$$

and U and V are two basic functions
(Symanzik polynomials, or graph polynomials).

One can consider quite general limits for a Feynman integral which depends on external momenta q_{i} and masses and is a scalar function of kinematic invariants and squares of masses, s_{i}, and assume that each s_{i} has certain scaling $\rho^{\kappa_{i}}$ where ρ is a small parameter.

One can consider quite general limits for a Feynman integral which depends on external momenta q_{i} and masses and is a scalar function of kinematic invariants and squares of masses, s_{i}, and assume that each s_{i} has certain scaling $\rho^{\kappa_{i}}$ where ρ is a small parameter.

A region \rightarrow scaling, i.e. $x_{i} \rightarrow \rho^{r_{i}} x_{i}$ where ρ is a small parameter connected with a given limit.

A systematical procedure to find regions based on geometry of polytopes and implemented as a public computer code asy.m [A. Pak \& A.V. Smirnov'10] which is now included in the code FIESTA [A.V. Smirnov'09-16]

A systematical procedure to find regions based on geometry of polytopes and implemented as a public computer code asy.m [A. Pak \& A.V. Smirnov'10] which is now included in the code FIESTA [A.V. Smirnov'09-16]
Using this code one can not only find relevant regions but also evaluate numerically coefficients at powers and logarithms of the given expansion parameter.

A systematical procedure to find regions based on geometry of polytopes and implemented as a public computer code asy.m [A. Pak \& A.V. Smirnov'10] which is now included in the code FIESTA [A.V. Smirnov'09-16]
Using this code one can not only find relevant regions but also evaluate numerically coefficients at powers and logarithms of the given expansion parameter.

Numerous applications have shown that the code asy.m works consistently even in cases where the function F is not positive - see, e.g.
[J.M. Henn, K. Melnikov \& V.S.'14; F. Caola, J.M. Henn, K. Melnikov \& V.S.'14]

Generalizations of this procedure to some cases where terms of the function F are negative
[B. Jantzen, A. Smirnov \& V.S.'12]
Potential and Glauber regions.

Generalizations of this procedure to some cases where terms of the function F are negative
[B. Jantzen, A. Smirnov \& V.S.' 12]
Potential and Glauber regions.
An example: one-loop diagram with two massive lines in the threshold limit $y=m^{2}-q^{2} / 4 \rightarrow 0$

$$
\begin{aligned}
F\left(q^{2}, y\right) & =\mathrm{i} \pi^{d / 2} \Gamma(\varepsilon) \\
& \times \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \varepsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4}\left(\alpha_{1}-\alpha_{2}\right)^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\varepsilon}}
\end{aligned}
$$

The code asy.m in its first version revealed only the contribution of the hard region, i.e. $\alpha_{i} \sim y^{0}$.

Decompose integration over $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{2} \leq \alpha_{1}$, with equal contributions.

Decompose integration over $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{2} \leq \alpha_{1}$, with equal contributions.

In the first domain, turn to new variables by
$\alpha_{1}=\alpha_{1}^{\prime} / 2, \alpha_{2}=\alpha_{2}^{\prime}+\alpha_{1}^{\prime} / 2$ and arrive at

$$
i \pi^{d / 2} \frac{\Gamma(\varepsilon)}{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \varepsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4} \alpha_{2}^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\varepsilon}}
$$

Decompose integration over $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{2} \leq \alpha_{1}$, with equal contributions.

In the first domain, turn to new variables by
$\alpha_{1}=\alpha_{1}^{\prime} / 2, \alpha_{2}=\alpha_{2}^{\prime}+\alpha_{1}^{\prime} / 2$ and arrive at

$$
i \pi^{d / 2} \frac{\Gamma(\varepsilon)}{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \varepsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4} \alpha_{2}^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\varepsilon}}
$$

Two regions: $(0,0)$ and $(0,1 / 2)$.

Decompose integration over $\alpha_{1} \leq \alpha_{2}$ and $\alpha_{2} \leq \alpha_{1}$, with equal contributions.

In the first domain, turn to new variables by
$\alpha_{1}=\alpha_{1}^{\prime} / 2, \alpha_{2}=\alpha_{2}^{\prime}+\alpha_{1}^{\prime} / 2$ and arrive at

$$
i \pi^{d / 2} \frac{\Gamma(\varepsilon)}{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left(\alpha_{1}+\alpha_{2}\right)^{2 \varepsilon-2} \delta\left(\alpha_{1}+\alpha_{2}-1\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}}{\left[\frac{q^{2}}{4} \alpha_{2}^{2}+y\left(\alpha_{1}+\alpha_{2}\right)^{2}-\mathrm{i} 0\right]^{\varepsilon}}
$$

Two regions: $(0,0)$ and $(0,1 / 2)$. The second one, with $\alpha_{1} \sim y^{0}, \alpha_{2} \sim \sqrt{y}$ gives

$$
i \pi^{d / 2} \frac{\Gamma(\varepsilon)}{2} \int_{0}^{\infty} \frac{\mathrm{d} \alpha_{2}}{\left(\frac{q^{2}}{4} \alpha_{2}^{2}+y\right)^{\varepsilon}}
$$

A recent suggestion [T. Semenova, A. Smirnov \& V.S.'19]:
To mathematically simplify the description of expansion by regions, let us use the parametric representation of Lee and Pomeransky [R.N. Lee and A.A. Pomeransky'13]

A recent suggestion [T. Semenova, A. Smirnov \& V.S.'19]:
To mathematically simplify the description of expansion by regions, let us use the parametric representation of Lee and Pomeransky [R.N. Lee and A.A. Pomeransky'13]

$$
G(t, \varepsilon)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} P^{-\delta} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n},
$$

where $\delta=d / 2=2-\varepsilon$ and $P=U+F$.

A recent suggestion [T. Semenova, A. Smirnov \& V.S.' 19]:
To mathematically simplify the description of expansion by regions, let us use the parametric representation of Lee and Pomeransky [R.N. Lee and A.A. Pomeransky'13]

$$
G(t, \varepsilon)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} P^{-\delta} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

where $\delta=d / 2=2-\varepsilon$ and $P=U+F$.
Feynman parametric representation can be obtained from it by inserting $1=\int \delta\left(\sum_{i} x_{i}-\eta\right) \mathrm{d} \eta$, scaling $x \rightarrow \eta x$ and integrating over η.

Let t be the small parameter, e.g. $-m^{2} / q^{2}$ for the Sudakov limit or $\left(p_{1}+p_{3}\right)^{2} /\left(p_{1}+p_{2}\right)^{2}$ for the Regge limit.

Let t be the small parameter, e.g. $-m^{2} / q^{2}$ for the Sudakov limit or $\left(p_{1}+p_{3}\right)^{2} /\left(p_{1}+p_{2}\right)^{2}$ for the Regge limit. Let P be a polynomial with positive coefficients,

$$
P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w \in S} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}
$$

where S is a finite set of points $w=\left(w_{1}, \ldots, w_{n+1}\right)$.

Let t be the small parameter, e.g. $-m^{2} / q^{2}$ for the Sudakov limit or $\left(p_{1}+p_{3}\right)^{2} /\left(p_{1}+p_{2}\right)^{2}$ for the Regge limit. Let P be a polynomial with positive coefficients,

$$
P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w \in S} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}
$$

where S is a finite set of points $w=\left(w_{1}, \ldots, w_{n+1}\right)$.
The Newton polytope \mathcal{N}_{P} of P is the convex hull of the set S in the $n+1$-dimensional Euclidean space \mathbb{R}^{n+1} equipped with the scalar product $v \cdot w=\sum_{i=1}^{n+1} v_{i} w_{i}$.

Let t be the small parameter, e.g. $-m^{2} / q^{2}$ for the Sudakov limit or $\left(p_{1}+p_{3}\right)^{2} /\left(p_{1}+p_{2}\right)^{2}$ for the Regge limit. Let P be a polynomial with positive coefficients,

$$
P\left(x_{1}, \ldots, x_{n}, t\right)=\sum_{w \in S} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w_{n+1}}
$$

where S is a finite set of points $w=\left(w_{1}, \ldots, w_{n+1}\right)$.
The Newton polytope \mathcal{N}_{P} of P is the convex hull of the set S in the $n+1$-dimensional Euclidean space \mathbb{R}^{n+1} equipped with the scalar product $v \cdot w=\sum_{i=1}^{n+1} v_{i} w_{i}$.
A facet of P is a face of maximal dimension, i.e. n.

The main conjecture.
The asymptotic expansion of

$$
G(t, \varepsilon)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} P^{-\delta} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

in the limit $t \rightarrow+0$ is given by
$G(t, \varepsilon) \sim \sum_{\gamma} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[M_{\gamma}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$,
where the sum runs over facets of the Newton polytope \mathcal{N}_{P} of P, for which the normal vectors $r^{\gamma}=\left(r_{1}^{\gamma}, \ldots, r_{n}^{\gamma}, r_{n+1}^{\gamma}\right)$, oriented inside the polytope have $r_{n+1}^{\gamma}>0$.

The main conjecture.
The asymptotic expansion of

$$
G(t, \varepsilon)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} P^{-\delta} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

in the limit $t \rightarrow+0$ is given by

$$
G(t, \varepsilon) \sim \sum_{\gamma} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[M_{\gamma}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

where the sum runs over facets of the Newton polytope \mathcal{N}_{P} of P, for which the normal vectors $r^{\gamma}=\left(r_{1}^{\gamma}, \ldots, r_{n}^{\gamma}, r_{n+1}^{\gamma}\right)$, oriented inside the polytope have $r_{n+1}^{\gamma}>0$.
Let us call these facets essential.

The main conjecture.
The asymptotic expansion of

$$
G(t, \varepsilon)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} P^{-\delta} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

in the limit $t \rightarrow+0$ is given by
$G(t, \varepsilon) \sim \sum_{\gamma} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left[M_{\gamma}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$,
where the sum runs over facets of the Newton polytope \mathcal{N}_{P} of P, for which the normal vectors $r^{\gamma}=\left(r_{1}^{\gamma}, \ldots, r_{n}^{\gamma}, r_{n+1}^{\gamma}\right)$, oriented inside the polytope have $r_{n+1}^{\gamma}>0$.
Let us call these facets essential.
Let us normalize these vectors by $r_{n+1}^{\gamma}=1$.

The contribution of a given essential facet is defined by the change of variables $x_{i} \rightarrow t^{r_{i}^{\gamma}} x_{i}$ in the integral and expanding the resulting integrand in powers of t.

The contribution of a given essential facet is defined by the change of variables $x_{i} \rightarrow t^{r_{i}^{\gamma}} x_{i}$ in the integral and expanding the resulting integrand in powers of t.
This leads to the following definitions.

The contribution of a given essential facet is defined by the change of variables $x_{i} \rightarrow t^{r_{i}^{\gamma}} x_{i}$ in the integral and expanding the resulting integrand in powers of t.
This leads to the following definitions.
For a given essential facet γ, let us define the polynomial
$P^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)=P\left(t^{r_{1}^{\gamma}} x_{1}, \ldots, t^{r_{n}^{\gamma}} x_{n}, t\right) \equiv \sum_{w \in S} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w \cdot r^{\gamma}}$

The contribution of a given essential facet is defined by the change of variables $x_{i} \rightarrow t^{r_{i}^{\gamma}} x_{i}$ in the integral and expanding the resulting integrand in powers of t.
This leads to the following definitions.
For a given essential facet γ, let us define the polynomial

$$
P^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)=P\left(t^{r_{1}^{\gamma}} x_{1}, \ldots, t^{r_{n}^{\gamma}} x_{n}, t\right) \equiv \sum_{w \in S} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w \cdot r^{\gamma}}
$$

The scalar product $w \cdot r^{\gamma}$ is proportional to the projection of the point w on the vector r^{γ}. For $w \in S$, it takes a minimal value for all the points belonging to the considered facet $w \in S \cap \gamma$. Let us denote it by $L(\gamma)$.

Expansion by regions in the mathematical language

The polynomial P^{γ} can be represented as

$$
t^{L(\gamma)}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)+P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)\right)
$$

The polynomial P^{γ} can be represented as

$$
t^{L(\gamma)}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)+P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)\right)
$$

where

$$
\begin{aligned}
P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{w \in S \cap \gamma} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} \\
P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right) & =\sum_{w \in S \backslash \gamma} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w \cdot r^{\gamma}-L(\gamma)} .
\end{aligned}
$$

The polynomial P^{γ} can be represented as

$$
t^{L(\gamma)}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)+P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)\right)
$$

where

$$
\begin{aligned}
P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{w \in S \cap \gamma} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}}, \\
P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right) & =\sum_{w \in S \backslash \gamma} c_{w} x_{1}^{w_{1}} \ldots x_{n}^{w_{n}} t^{w \cdot r^{\gamma}-L(\gamma)} .
\end{aligned}
$$

The polynomial P_{0}^{γ} is independent of t while P_{1}^{γ} can be represented as a linear combination of positive rational powers of t with coefficients which are polynomials of x.

For a given facet γ, the operator M_{γ} acts on the integrand as follows

$$
\begin{aligned}
& M_{\gamma}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta} \\
= & t^{\sum_{i=1}^{n} r_{i}^{\gamma}-L(\gamma) \delta} \mathcal{T}_{t}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)+P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta} \\
= & t^{\sum_{i=1}^{n} r_{i}^{\gamma}-L(\gamma) \delta}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)\right)^{-\delta}+\ldots
\end{aligned}
$$

For a given facet γ, the operator M_{γ} acts on the integrand as follows

$$
\begin{aligned}
& M_{\gamma}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta} \\
= & t^{\sum_{i=1}^{n} r_{i}^{\gamma}-L(\gamma) \delta} \mathcal{T}_{t}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)+P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta} \\
= & t^{\sum_{i=1}^{n} r_{i}^{\gamma}-L(\gamma) \delta}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)\right)^{-\delta}+\ldots
\end{aligned}
$$

where \mathcal{T}_{t} performs an asymptotic expansion in powers of t at $t=0$.

For a given facet γ, the operator M_{γ} acts on the integrand as follows

$$
\begin{aligned}
& M_{\gamma}\left(P\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta} \\
= & t^{\sum_{i=1}^{n} r_{i}^{\gamma}-L(\gamma) \delta} \mathcal{T}_{t}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)+P_{1}^{\gamma}\left(x_{1}, \ldots, x_{n}, t\right)\right)^{-\delta} \\
= & t^{\sum_{i=1}^{n} r_{i}^{\gamma}-L(\gamma) \delta}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)\right)^{-\delta}+\ldots
\end{aligned}
$$

where \mathcal{T}_{t} performs an asymptotic expansion in powers of t at $t=0$.
In particular, the LO term of a given facet γ is
$t^{-L(\gamma) \delta+\sum_{i=1}^{n} r_{i}^{\gamma}} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(P_{0}^{\gamma}\left(x_{1}, \ldots, x_{n}\right)\right)^{-\delta} \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$.

An example:

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(x^{2}+x+t\right)^{\varepsilon-1} d x
$$

in the limit $t \rightarrow 0$.

Expansion by regions in the mathematical language

An example:

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(x^{2}+x+t\right)^{\varepsilon-1} d x
$$

in the limit $t \rightarrow 0$.

$$
P(x, t)=\sum_{\left(w_{1}, w_{2}\right) \in S} C_{\left(w_{1}, w_{2}\right)} x^{w_{1}} t^{w_{2}}
$$

Expansion by regions in the mathematical language

An example:

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(x^{2}+x+t\right)^{\varepsilon-1} d x
$$

in the limit $t \rightarrow 0$.
$P(x, t)=\sum_{\left(w_{1}, w_{2}\right) \in S} C_{\left(w_{1}, w_{2}\right)} X^{w_{1}} t^{w_{2}}$
The Newton polytope (triangle)

An example:

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(x^{2}+x+t\right)^{\varepsilon-1} d x
$$

in the limit $t \rightarrow 0$.
$P(x, t)=\sum_{\left(w_{1}, w_{2}\right) \in S} C_{\left(w_{1}, w_{2}\right)} x^{w_{1}} t^{w_{2}}$
The Newton polytope (triangle)

Two essential facets γ_{1} and γ_{2} with the corresponding normal vectors $r_{1}=(0,1)$ and $r_{2}=(1,1)$.

Expansion by regions in the mathematical language
$\gamma_{1} \rightarrow$ expanding the integrand in t. L0 is given by

$$
\int_{0}^{\infty}\left(x^{2}+x\right)^{\varepsilon-1} \mathrm{~d} x=\frac{\Gamma(1-2 \varepsilon) \Gamma(\varepsilon)}{\Gamma(1-\varepsilon)}
$$

$\gamma_{1} \rightarrow$ expanding the integrand in t. L0 is given by

$$
\int_{0}^{\infty}\left(x^{2}+x\right)^{\varepsilon-1} \mathrm{~d} x=\frac{\Gamma(1-2 \varepsilon) \Gamma(\varepsilon)}{\Gamma(1-\varepsilon)}
$$

$\gamma_{2} \rightarrow t$ times the integral of the integrand with $x \rightarrow t x$ expanded in powers of t. L0 is given by

$$
t^{\varepsilon} \int_{0}^{\infty}(x+1)^{\varepsilon-1} \mathrm{~d} x=-\frac{t^{\varepsilon}}{\varepsilon}
$$

$\gamma_{1} \rightarrow$ expanding the integrand in t. L0 is given by

$$
\int_{0}^{\infty}\left(x^{2}+x\right)^{\varepsilon-1} \mathrm{~d} x=\frac{\Gamma(1-2 \varepsilon) \Gamma(\varepsilon)}{\Gamma(1-\varepsilon)}
$$

$\gamma_{2} \rightarrow t$ times the integral of the integrand with $x \rightarrow t x$ expanded in powers of t. L0 is given by

$$
t^{\varepsilon} \int_{0}^{\infty}(x+1)^{\varepsilon-1} \mathrm{~d} x=-\frac{t^{\varepsilon}}{\varepsilon}
$$

The sum of the contributions in the LO:

$$
G(t, \varepsilon) \sim-\log t+O(\varepsilon)
$$

Expansion by regions in the mathematical language

Another example

in the limit $m^{2} / q^{2} \rightarrow 0$.

Expansion by regions in the mathematical language

Another example

in the limit $m^{2} / q^{2} \rightarrow 0$.

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(P\left(x_{1}, x_{2}, t\right)\right)^{\varepsilon-2} x_{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
$$

Another example

in the limit $m^{2} / q^{2} \rightarrow 0$.

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(P\left(x_{1}, x_{2}, t\right)\right)^{\varepsilon-2} x_{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
$$

where

$$
P=U+F=\sum_{w=\left(w_{1}, w_{2}, w_{3}\right) \in S} c_{w} x_{1}^{w_{1}} x_{2}^{w_{2}} t^{w_{3}}
$$

Another example

in the limit $m^{2} / q^{2} \rightarrow 0$.

$$
G(t, \varepsilon)=\int_{0}^{\infty}\left(P\left(x_{1}, x_{2}, t\right)\right)^{\varepsilon-2} x_{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2}
$$

where

$$
\begin{gathered}
P=U+F=\sum_{w=\left(w_{1}, w_{2}, w_{3}\right) \in S} c_{w} x_{1}^{w_{1}} x_{2}^{w_{2}} t^{w_{3}}, \\
F=x_{1}\left(t\left(x_{1}+x_{2}\right)+x_{2}\right), \quad U=x_{1}+x_{2}
\end{gathered}
$$

Expansion by regions in the mathematical language
The vertices A, B, C, D, E of the Newton polytope coincide with the set S

$$
F=x_{1}\left(t\left(x_{1}+x_{2}\right)+x_{2}\right), \quad U=x_{1}+x_{2}
$$

$A(2,0,1), B(1,1,1), C(1,1,0), D(1,0,0), E(0,1,0)$.

The vertices A, B, C, D, E of the Newton polytope coincide with the set S

$$
F=x_{1}\left(t\left(x_{1}+x_{2}\right)+x_{2}\right), \quad U=x_{1}+x_{2}
$$

$A(2,0,1), B(1,1,1), C(1,1,0), D(1,0,0), E(0,1,0)$.

Two essential facets:

The vertices A, B, C, D, E of the Newton polytope coincide with the set S

$$
F=x_{1}\left(t\left(x_{1}+x_{2}\right)+x_{2}\right), \quad U=x_{1}+x_{2}
$$

$A(2,0,1), B(1,1,1), C(1,1,0), D(1,0,0), E(0,1,0)$.

Two essential facets:
$C D E \in$ the plane $w_{3}=0$, with the normal vector $(0,0,1) \rightarrow$ expansion in t.

The vertices A, B, C, D, E of the Newton polytope coincide with the set S

$$
F=x_{1}\left(t\left(x_{1}+x_{2}\right)+x_{2}\right), \quad U=x_{1}+x_{2}
$$

$A(2,0,1), B(1,1,1), C(1,1,0), D(1,0,0), E(0,1,0)$.

Two essential facets:
$C D E \in$ the plane $w_{3}=0$, with the normal vector $(0,0,1) \rightarrow$ expansion in t.
$A C D \in$ the plane $w_{1}-w_{3}=1$, with the normal vector $(-1,0,1)$
$\rightarrow t^{-2} \int_{0}^{\infty} x_{1}\left[x_{1} / t+x_{2}+\left(x_{1} / t\right)\left(t\left(x_{1} / t+x_{2}\right)\right]^{\varepsilon-2}=\ldots\right.$

Comments

A typical feature of results obtained within expansion by regions (or, subgraphs) is the appearance of poles in δ or ε on the right-hand side: usually, they are infrared and ultraviolet but they can be also collinear.

Comments

A typical feature of results obtained within expansion by regions (or, subgraphs) is the appearance of poles in δ or ε on the right-hand side: usually, they are infrared and ultraviolet but they can be also collinear.
The cancellation of these poles is a very natural check of the expansion procedure, i.e. the pole part of the sum of terms of the expansion should be equal to the pole part of the initial integral.

The contribution of each essential facet to the expansion is evaluated in the corresponding domain of δ where it is convergent and then the result it continued analytically to a desired domain.

The contribution of each essential facet to the expansion is evaluated in the corresponding domain of δ where it is convergent and then the result it continued analytically to a desired domain.

One has to distinguish situations where contributions of individual facets are not regularized by the initial regularization parameter δ. A natural way to proceed is to introduce auxiliary analytic regularization by inserting powers $x_{i}^{\lambda_{i}}$. For Feynman integrals at Euclidean external momenta, Speer proved that the corresponding dimensionally and analytically regularized parametric integral is convergent in a non-empty domain of parameters $\left(\varepsilon, \lambda_{1}, \ldots, \lambda_{n}\right)$.
A generalization of Speer's theorem to the case of LP representation [T. Semenova, A. Smirnov \& V.S.'19].

Advantages of the new formulation.

1. The degree of $P=U+F$ is less than the degree of $U F$. Therefore, the current version of asy is much more powerful.

Advantages of the new formulation.

1. The degree of $P=U+F$ is less than the degree of $U F$. Therefore, the current version of asy is much more powerful. Equivalence of expansion by regions for Feynman integrals based on the standard Feynman parametric representation and the LP representation (implemented in FIESTA) was proven [T. Semenova, A. Smirnov \& V.S.'19]

Advantages of the new formulation.

1. The degree of $P=U+F$ is less than the degree of $U F$. Therefore, the current version of asy is much more powerful. Equivalence of expansion by regions for Feynman integrals based on the standard Feynman parametric representation and the LP representation (implemented in FIESTA) was proven [T. Semenova, A. Smirnov \& V.S.'19]
2. The new formulation has more chances to be proven.

A proof in a special case
[T. Semenova, A. Smirnov \& V.S.'19].

■ Expansion by regions is a very important strategy successfully applied in numerous calculations.

■ Expansion by regions is a very important strategy successfully applied in numerous calculations.

- The Lee-Pomeransky representation looks very natural to be used in proving expansion by regions.

■ Expansion by regions is a very important strategy successfully applied in numerous calculations.

- The Lee-Pomeransky representation looks very natural to be used in proving expansion by regions.

■ For the moment, expansion by regions still has the status of experimental mathematics. Hopefully, it will be mathematically justified.

- Expansion by regions is a very important strategy successfully applied in numerous calculations.
- The Lee-Pomeransky representation looks very natural to be used in proving expansion by regions.
- For the moment, expansion by regions still has the status of experimental mathematics. Hopefully, it will be mathematically justified.
- Divide et impera

