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where h is the number of loops and ε = (4− d)/2.
The expansion is often 
alled asymptoti
, i.e. the remainder of

expansion after keeping terms up to t

N

is o(tN).
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∑

j=0




′
n,j ,k(ε)t

n−jε logk t .

There are various methods to obtain an expansion of a given

Feynman integral, e.g., using a MB-representation.

There are, however, two general strategies, expansion by

subgraphs and expansion by regions, whi
h provide a result in

this form for any given Feynman integral, where 
oe�
ients

are expressed either in graph-theoreti
al language, or in the

language of polytopes asso
iated with a given integral.
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introdu
ed and applied in the 
ase of threshold expansion.

Expanding a given Feynman integral in a given limit.

In the `physi
al' language:

Divide the spa
e of the loop momenta into various regions

and, in every region, expand the integrand in a series with

respe
t to the parameters that are 
onsidered there small.

Integrate the integrand, expanded in this way in ea
h

region, over the whole integration domain of the loop

momenta.

Set to zero any s
aleless integral.
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A simple example

G (q2,m2; d) =

∫

d

d

k

(k2 −m

2)2(q − k)2

with d = 4− 2ε in the limit m

2/q2 → 0.
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Here one 
an 
hange the order of integration and Taylor

expansion.
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We did not refer to the zero value of s
aleless integrals

∫ ∞

0

k

λ
dk = 0.
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Ea
h resulting integral is evaluated in the 
orresponding

domain of ε where it is 
onvergent, with a subsequent analyti



ontinuation to the initial domain, i.e. a vi
inity of ε = 0.

The remainder 
an be des
ribed as

R

n

G = (1−M

n

1

)(1−M

n

2

)G

=

∫ ∞

0

k

−ε

[

(1− T n

m

)
1

k +m

] [

(1− T n

k

)
1

k + q

]

dk
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M
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n = 1− (1−M
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1

)(1−M

n

2

) + R

n

where

1− (1−M

n

1

)(1−M

n

2

) = M

n

1

+M

n

2

−M

n

1

M

n

2

Set s
aleless integrals in M

n

1

M

n

2

to zero to obtain

G ∼ M

n

1

G +M

n

2

G + R

n

G
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1
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n

i

=
∑

n

j=0

M

(j)
i

for i = 1, 2. Let Reε < 0. Then

M

n

1

+M

n

2

−M

n

1

M

n

2

=

n

∑

j=0

(1−M

j−1

2

)M
(j)
1

+

n

∑

j=0

(1−M

j

1

)M
(j)
2

.

Then the �rst sum takes gives

∫ ∞

0

k

−ε

[

(1− T j−1

k

)
1

k + q

]

T (j)
m

1

k +m

dk

∼ m

j

∫ ∞

0

k

−ε−j−1

[

(1− T j−1

k

)
1

k + q

]

dk
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∫ ∞

0

k

−ε−j−1

[

(1− T j−1

k

)
1

k + q

]

dk

is nothing but the analyti
 
ontinuation of the integral

∫ ∞

0

k

−ε−j−1

k + q

dk

from 0 < −Reε < 1 to −j − 1 < Reε < −j .
This reminds the analyti
 
ontinuation of the distribution x

λ
+

from Reλ > −1 to the whole 
omplex plane

[I.M. Gelfand '55℄, i.e. for integrals

∫ ∞

0

x

λφ(x)dx
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[

(1− T j

m

)
1

k +m

]

T (j)
k

1

k + q

dk

∼
∫ ∞

0

k

−ε−j

[

(1− T j

m

)
1

k +m

]

dk ,
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Similarly, the se
ond sum takes the form

∫ ∞

0

k

−ε

[

(1− T j

m

)
1

k +m

]

T (j)
k

1

k + q

dk

∼
∫ ∞

0

k

−ε−j

[

(1− T j

m

)
1

k +m

]

dk ,

and this is the analyti
 
ontinuation of the integral

∫ ∞

0

k

−ε−j

k +m

dk

from 0 < −Reε < 1 to j < Reε < j + 1.
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This means that we 
an represent the terms of expansion

des
ribed by the operator M

1

+M

2

−M

1

M

2

also in an

equivalent way using just the sum of the operators M

1

+M

2

,

with the pres
ription that ea
h resulting integral is evaluated

in its own domain of 
onvergen
e and then the result obtained

is analyti
ally 
ontinued to a given domain.
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Jantzen [B. Jantzen'11℄ provided detailed explanations, using

one- and two-loop examples, of how this strategy works by

starting from regions determined by some inequalities and


overing the whole integration spa
e of the loop momenta,

then expanding the integrand and then extending integration

and analyzing all the pie
es whi
h are obtained.

An indire
t proof [V.S.'90℄ of expansion by regions for limits

typi
al of Eu
lidean spa
e (where one has two di�erent regions

whi
h 
an be 
alled large and small).

Expansion by subgraphs [K.G. Chetyrkin'88, S. Gorishny'89℄,

for example, in the o�-shell large-momentum limit, i.e. where

a momentum Q is 
onsidered large and momenta q

i

as well as

the masses m

j

are small,

GΓ ∼
∑

γ

GΓ/γ ◦ Tqγ ,mγ
Gγ
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How to �nd relevant regions?

For limits typi
al of Eu
lidean spa
e, these are regions of large

(hard) and small (soft) momenta.

For the Regge limit and various versions of the Sudakov limit,

these are hard, soft, 1-
ollinear, . . . , ultrasoft regions.

For the threshold limit y = m

2 − q

2/4 → 0, one has

(hard), k

0

∼
√

q

2 , ~k ∼
√

q

2 ,

(soft), k

0

∼ √
y , ~k ∼ √

y ,

(potential), k

0

∼ y/
√

q

2 , ~k ∼ √
y ,

(ultrasoft), k

0

∼ y/
√

q

2 , ~k ∼ y/
√

q

2 .

where q = (q
0

,~0).
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Expansion by regions in Feynman parameters [V.S.'99℄, also

formulated in the physi
al language.

Feynman parametri
 representation for a Feynman integral

with propagators 1/(−p2 +m

2

l

− i0)
∫ ∞

0

. . .

∫ ∞

0

δ
(

∑

x

i

− 1

)

U

n−(h+1)d/2
F

hd/2−n

dx

1

. . . dx
n

where n is the number of lines (edges), h is the number of

loops (independent 
ir
uits) of the graph,

F = −V + U

∑

m

2

l

x

l

,
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Expansion by regions in Feynman parameters [V.S.'99℄, also

formulated in the physi
al language.

Feynman parametri
 representation for a Feynman integral

with propagators 1/(−p2 +m

2

l

− i0)
∫ ∞

0

. . .

∫ ∞

0

δ
(

∑

x

i

− 1

)

U

n−(h+1)d/2
F

hd/2−n

dx

1

. . . dx
n

where n is the number of lines (edges), h is the number of

loops (independent 
ir
uits) of the graph,

F = −V + U

∑

m

2

l

x

l

,

and U and V are two basi
 fun
tions

(Symanzik polynomials, or graph polynomials).
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where ρ is a
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One 
an 
onsider quite general limits for a Feynman integral

whi
h depends on external momenta q

i

and masses and is a

s
alar fun
tion of kinemati
 invariants and squares of masses,

s

i

, and assume that ea
h s

i

has 
ertain s
aling ρκi

where ρ is a

small parameter.

A region → s
aling, i.e. x

i

→ ρri x
i

where ρ is a small

parameter 
onne
ted with a given limit.
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A systemati
al pro
edure to �nd regions based on geometry of

polytopes and implemented as a publi
 
omputer 
ode asy.m

[A. Pak & A.V. Smirnov'10℄ whi
h is now in
luded in the 
ode

FIESTA [A.V. Smirnov'09-16℄

Using this 
ode one 
an not only �nd relevant regions but also

evaluate numeri
ally 
oe�
ients at powers and logarithms of

the given expansion parameter.

Numerous appli
ations have shown that the 
ode asy.m works


onsistently even in 
ases where the fun
tion F is not positive

� see, e.g.

[J.M. Henn, K. Melnikov & V.S.'14; F. Caola, J.M. Henn,

K. Melnikov & V.S.'14℄
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Generalizations of this pro
edure to some 
ases where terms of

the fun
tion F are negative

[B. Jantzen, A. Smirnov & V.S.'12℄

Potential and Glauber regions.

An example: one-loop diagram with two massive lines in the

threshold limit y = m

2 − q

2/4 → 0

F (q2, y) = iπd/2 Γ(ε)

×
∫ ∞

0

∫ ∞

0

(α
1

+ α
2

)2ε−2 δ (α
1

+ α
2

− 1) dα
1

dα
2

[

q

2

4

(α
1

− α
2

)2 + y(α
1

+ α
2

)2 − i0

]ε

The 
ode asy.m in its �rst version revealed only the


ontribution of the hard region, i.e. α
i

∼ y

0

.
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De
ompose integration over α
1

≤ α
2

and α
2

≤ α
1

, with equal


ontributions.

In the �rst domain, turn to new variables by

α
1

= α′
1

/2, α
2

= α′
2

+ α′
1

/2 and arrive at

iπd/2 Γ(ε)

2

∫ ∞

0

∫ ∞

0

(α
1

+ α
2

)2ε−2 δ (α
1

+ α
2

− 1) dα
1

dα
2

[

q

2

4

α2

2

+ y(α
1

+ α
2

)2 − i0

]ε .



Expansion by regions: an overview

Expansion by regions in Feynman parameters

De
ompose integration over α
1

≤ α
2

and α
2

≤ α
1

, with equal


ontributions.

In the �rst domain, turn to new variables by

α
1

= α′
1

/2, α
2

= α′
2

+ α′
1

/2 and arrive at

iπd/2 Γ(ε)

2

∫ ∞

0

∫ ∞

0

(α
1

+ α
2

)2ε−2 δ (α
1

+ α
2

− 1) dα
1

dα
2

[

q

2

4

α2

2

+ y(α
1

+ α
2

)2 − i0

]ε .

Two regions: (0, 0) and (0, 1/2).
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De
ompose integration over α
1

≤ α
2

and α
2

≤ α
1

, with equal


ontributions.

In the �rst domain, turn to new variables by

α
1

= α′
1

/2, α
2

= α′
2

+ α′
1

/2 and arrive at

iπd/2 Γ(ε)

2

∫ ∞

0

∫ ∞

0

(α
1

+ α
2

)2ε−2 δ (α
1

+ α
2

− 1) dα
1

dα
2

[

q

2

4

α2

2

+ y(α
1

+ α
2

)2 − i0

]ε .

Two regions: (0, 0) and (0, 1/2). The se
ond one, with

α
1

∼ y

0, α
2

∼ √
y gives

iπd/2 Γ(ε)

2

∫ ∞

0

dα
2

(

q

2

4

α2

2

+ y

)ε ,
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A re
ent suggestion [T. Semenova, A. Smirnov & V.S.'19℄:

To mathemati
ally simplify the des
ription of expansion by

regions, let us use the parametri
 representation of Lee and

Pomeransky [R.N. Lee and A.A. Pomeransky'13℄

G (t, ε) =

∫ ∞

0

. . .

∫ ∞

0

P

−δ
dx

1

. . . dx
n

,

where δ = d/2 = 2− ε and P = U + F .

Feynman parametri
 representation 
an be obtained from it by

inserting 1 =
∫

δ(
∑

i

x

i

− η)dη, s
aling x → ηx and

integrating over η.
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where S is a �nite set of points w = (w
1

, ...,w
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The Newton polytope N
P

of P is the 
onvex hull of the set S

in the n + 1-dimensional Eu
lidean spa
e R
n+1

equipped with

the s
alar produ
t v · w =
∑

n+1

i=1

v

i

w

i

.
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Let t be the small parameter, e.g. −m2/q2 for the Sudakov

limit or (p
1

+ p

3

)2/(p
1

+ p

2

)2 for the Regge limit.

Let P be a polynomial with positive 
oe�
ients,

P(x
1

, . . . , x
n

, t) =
∑

w∈S




w

x

w

1

1

. . . xwn

n

t

w

n+1 ,

where S is a �nite set of points w = (w
1

, ...,w
n+1

).

The Newton polytope N
P

of P is the 
onvex hull of the set S

in the n + 1-dimensional Eu
lidean spa
e R
n+1

equipped with

the s
alar produ
t v · w =
∑

n+1

i=1

v

i

w

i

.

A fa
et of P is a fa
e of maximal dimension, i.e. n.



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

The main 
onje
ture.

The asymptoti
 expansion of

G (t, ε) =

∫ ∞

0

. . .

∫ ∞

0

P

−δ
dx

1

. . . dx
n

,

in the limit t → +0 is given by

G (t, ε) ∼
∑

γ

∫ ∞

0

. . .

∫ ∞

0

[

Mγ (P(x1, . . . , xn, t))
−δ
]

dx

1

. . . dx
n

,

where the sum runs over fa
ets of the Newton polytope N
P

of

P, for whi
h the normal ve
tors r

γ = (r γ
1

, . . . , r γ
n

, r γ
n+1

),
oriented inside the polytope have r

γ
n+1

> 0.
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The main 
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The asymptoti
 expansion of

G (t, ε) =

∫ ∞

0

. . .

∫ ∞

0

P

−δ
dx

1

. . . dx
n

,

in the limit t → +0 is given by

G (t, ε) ∼
∑

γ

∫ ∞

0

. . .

∫ ∞

0

[

Mγ (P(x1, . . . , xn, t))
−δ
]

dx

1

. . . dx
n

,

where the sum runs over fa
ets of the Newton polytope N
P

of

P, for whi
h the normal ve
tors r

γ = (r γ
1

, . . . , r γ
n

, r γ
n+1

),
oriented inside the polytope have r

γ
n+1

> 0.

Let us 
all these fa
ets essential.

Let us normalize these ve
tors by r

γ
n+1

= 1.
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This leads to the following de�nitions.

For a given essential fa
et γ, let us de�ne the polynomial

P
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w ·rγ

The s
alar produ
t w · r γ is proportional to the proje
tion of

the point w on the ve
tor r

γ
. For w ∈ S , it takes a minimal

value for all the points belonging to the 
onsidered fa
et

w ∈ S ∩ γ. Let us denote it by L(γ).



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

The polynomial P

γ

an be represented as

t

L(γ) (Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t)) ,



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

The polynomial P

γ

an be represented as

t

L(γ) (Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t)) ,

where

P

γ
0

(x
1

, . . . , x
n

) =
∑

w∈S∩γ




w

x

w

1

1

. . . xwn

n

,

P

γ
1

(x
1

, . . . , x
n

, t) =
∑

w∈S\γ




w

x

w

1

1

. . . xwn

n

t

w ·rγ−L(γ) .



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

The polynomial P

γ

an be represented as

t

L(γ) (Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t)) ,

where

P

γ
0

(x
1

, . . . , x
n

) =
∑

w∈S∩γ




w

x

w

1

1

. . . xwn

n

,

P

γ
1

(x
1

, . . . , x
n

, t) =
∑

w∈S\γ




w

x

w

1

1

. . . xwn

n

t

w ·rγ−L(γ) .

The polynomial P

γ
0

is independent of t while P

γ
1


an be

represented as a linear 
ombination of positive rational powers

of t with 
oe�
ients whi
h are polynomials of x .



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

For a given fa
et γ, the operator Mγ a
ts on the integrand as

follows

Mγ (P(x1, . . . , xn, t))
−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δT
t

(Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t))−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δ (Pγ
0

(x
1

, . . . , x
n

))−δ + . . .



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

For a given fa
et γ, the operator Mγ a
ts on the integrand as

follows

Mγ (P(x1, . . . , xn, t))
−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δT
t

(Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t))−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δ (Pγ
0

(x
1

, . . . , x
n

))−δ + . . .

where T
t

performs an asymptoti
 expansion in powers of t at

t = 0.



Expansion by regions: an overview

Expansion by regions in the mathemati
al language

For a given fa
et γ, the operator Mγ a
ts on the integrand as

follows

Mγ (P(x1, . . . , xn, t))
−δ

= t

∑
n

i=1 r
γ

i

−L(γ)δT
t

(Pγ
0

(x
1

, . . . , x
n

) + P

γ
1

(x
1

, . . . , x
n

, t))−δ

= t

∑
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−L(γ)δ (Pγ
0

(x
1

, . . . , x
n

))−δ + . . .

where T
t

performs an asymptoti
 expansion in powers of t at

t = 0.

In parti
ular, the LO term of a given fa
et γ is

t

−L(γ)δ+
∑

n

i=1 r
γ

i

∫ ∞

0

. . .

∫ ∞
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G (t, ε) =

∫ ∞

0

(x2 + x + t)ε−1

dx

in the limit t → 0.

P(x , t) =
∑

(w
1

,w
2

)∈S 
(w1

,w
2

)x
w

1

t

w

2

The Newton polytope (triangle)

w2

w1γ1

γ2

Two essential fa
ets γ
1

and γ
2

with the 
orresponding normal

ve
tors r

1

= (0, 1) and r

2

= (1, 1).
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γ
1

→ expanding the integrand in t. L0 is given by

∫ ∞

0

(x2 + x)ε−1

dx =
Γ(1− 2ε)Γ(ε)

Γ(1− ε)

γ
2

→ t times the integral of the integrand with x → tx

expanded in powers of t. L0 is given by

t

ε

∫ ∞

0

(x + 1)ε−1

dx = −t

ε

ε

The sum of the 
ontributions in the LO:

G (t, ε) ∼ − log t + O(ε)
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Two essential fa
ets:

CDE ∈ the plane w

3

= 0, with the normal ve
tor (0, 0, 1) →
expansion in t.

ACD ∈ the plane w

1

− w

3

= 1, with the normal ve
tor

(−1, 0, 1)
→ t

−2

∫∞

0

x

1

[x
1

/t + x

2

+ (x
1

/t)(t(x
1

/t + x

2

)]ε−2 = . . .
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Comments

A typi
al feature of results obtained within expansion by

regions (or, subgraphs) is the appearan
e of poles in δ or ε on

the right-hand side: usually, they are infrared and ultraviolet

but they 
an be also 
ollinear.

The 
an
ellation of these poles is a very natural 
he
k of the

expansion pro
edure, i.e. the pole part of the sum of terms of

the expansion should be equal to the pole part of the initial

integral.
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The 
ontribution of ea
h essential fa
et to the expansion is

evaluated in the 
orresponding domain of δ where it is


onvergent and then the result it 
ontinued analyti
ally to a

desired domain.

One has to distinguish situations where 
ontributions of

individual fa
ets are not regularized by the initial regularization

parameter δ. A natural way to pro
eed is to introdu
e

auxiliary analyti
 regularization by inserting powers x

λ
i

i

.

For Feynman integrals at Eu
lidean external momenta, Speer

proved that the 
orresponding dimensionally and analyti
ally

regularized parametri
 integral is 
onvergent in a non-empty

domain of parameters (ε, λ
1

, . . . , λ
n

).
A generalization of Speer's theorem to the 
ase of LP

representation [T. Semenova, A. Smirnov & V.S.'19℄.
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Advantages of the new formulation.

1. The degree of P = U + F is less than the degree of UF .

Therefore, the 
urrent version of asy is mu
h more powerful.

Equivalen
e of expansion by regions for Feynman integrals

based on the standard Feynman parametri
 representation and

the LP representation (implemented in FIESTA) was proven

[T. Semenova, A. Smirnov & V.S.'19℄

2. The new formulation has more 
han
es to be proven.

A proof in a spe
ial 
ase

[T. Semenova, A. Smirnov & V.S.'19℄.
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Divide et impera


	Expansion by regions in the physical language
	Expansion by regions in Feynman parameters
	Expansion by regions in the mathematical language
	Summary

