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Feynman integrals are important in QFT

Required to compute physical observables
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Fruitful interplay with mathematics

special functions; differential equations; algebraic geometry



Technical challenges

Scales (masses, energies) — multi-variable functions

Multi-loop integrals — multifold iterated integrals

Non-planar diagrams — complicated analytic structure
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Challenge: multi-loop Feynman integrals

f(pi-pj) = /d4k1d4/~c2 . .d*kp T(ps; kj)
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Transcendental . .
. rational loop integrand
function

® What special functions do Feynman integrals
evaluate to?
® What singularities do they have!

® How can we determine the functions efficiently?



Usefulness of dimensional regularisation

Integrals in non-integer dimensions:

d*k — d* 2%k

Physical use: serves to regulate divergences:

F(piie) = — > € fE (py)

kmax

k>0

Mathematical use: organizing principle (grading) f*)
are k-fold iterated integrals (under some assumptions)
We say they have uniform transcendental (UT) weight.



Canonical differential equation (DE) method

n-th order partial differential
equations (Picard-Fuchs)

™.

system of |st order DE

Typically
complicated

‘ T : . Ver
canonical’ DE define special functions =
simple
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Canonical differential equations e 2013
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Matrix with complicated rational entries

Canonical
form:

/
Basis of uniform weight Constant Singular
Feynman integrals (UT) matrices points




How to find UT integrals!?

Solution of canonical DE are iterated integrals of
uniform transcendental weight (UT)

® Analysis of singularity structure of DE matrix A

f—T1f A—T1AT —T719,T
[Lee ’14;JMH,’14; Prausa ’| 7; Meyer ’| 7; Gituliar, Magerya ’ | 7]

® Analysis of residues of rational loop integrand

[Arkani-Hamed, Bourjaily, Cachzo, Goncharov, Postnikov, Trnka, 2012]

related to d-log integrand :

d*l (p1 + p2)*(p1 + p3)?
020+ p1)*(£ 4+ p1 + p2)?(0 — ps)?
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Practical need for refined methods

Often easy to find a few UT integrals,
but hard to find a complete UT basis.

Some methods restricted to small matrices,
or to few variables.

Our new method:
- heeds only one UT integral as starting point
- can deal with larger matrices
- applies to multiple variables
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We develop further an idea by [Hsschele, Hoff, Ueda *14]

® First-order DE only canonical if all integrals are UT
\

\\ ‘ ///

® Picard-Fuchs eq. for a single integral is unique, = ;)=
and contains valuable information.

® They applied this knowledge to find the remaining
UT integrals, for cases with 2-3 master integrals,
and outlined a general procedure.

® VWe formulate the method in matrix form, and
solve the equations systematically

Public algorithm: [Dlapa, Henn,Yan "1 9]
https://github.com/UT-team/INITIAL



Step |: Picard-Fuchs eq. of a UT integral

Assumption: know one UT integral f;

® Complete to (any) basis f,and compute DE
d - B
@f — A(QZ’, G)f y

e Differentiate (/] /- f\'")" = W(a,

z,€) f
\ given by

® | !yields Picard-Fuchs eq.for /1 derivatives of A

5@/// |dea: use the infinite amount of information

provided by f; being UT.



Step 2: Ansatz for canonical system

Assume existence of UT basis gwith ¢1 = fu

4 s
dz”

(g, g) g™ = ®(z,€) §.

=cA(z)g.

Basis transformation: f=Tg. where T =010,
GoU 1P =Ty Unit
vector
Constraint on @ from i dln az
expected canonical
form: / \\constant

matri
Follow from singularities atrices: to

OfA(X) be fcund



Step 3: Solve equations algorithmically

G0 1d = 7,

—

/ \ ~ Unit vector

Known matrix Parametrized by set of unknown
L€ constant matrices m;
Known polynomial ¢ dependence

Equations valid for any x : can use finite field methods.
Solve at each order in € .

Higher orders in € provide consistency check.



Public algorithm available

All steps implemented in public algorithm
https://github.com/UT-team/INITIAL

Presentation was for single-variable case, but method
works for multiple variables; key advantage over other
methods!



Corollary of our method: test of UT
property of a given integral

® Algorithm can be used to test whether candidate
integrals can be UT

® Can suggest modifications if an integral is
‘almost’ UT

® Very useful to algorithmically search for UT
integrals



State-of-the art applications



Application |: Planar three-loop on-shell integrals

Four-particle scattering [Henn, SmirnovA2, 4]
P2 p3
P1 P4
(a) (b)

4
Kinematics: >_Pi=0, p;i=0. s=(pi+p2)°, t=(pa+tps), z=t/s.
1 =1

® UT integral in top sector easily found using d-log
integrand analysis [Arkani-Hamed et al ’| |, Henn ’13,Wasser, ’ | 6]

® Obtained full system of differential equations

Matrix size 26x26 for case (a),41x4| for case (b)
. d d

Alz) = mo—— Inx +m1@ In(1+ x)

Matrix block structure: at most 3 master integrals per sector.



Application 2: Four-loop four-particle scattering

P2 p3
|. Solved the system on the cut (8 Ml)
2. Found further UT integrals (off the cut)
by testing a large list of candidates
3. Full canonical system (19 MIl) of DE b1 P4

4. Fix boundary constants from analyticity + one trivial integral

5.Analytic result for scalar integral:

6

T 1 1
e®(1 —5€¢)(1 —6€) G1,1.1.1.1,1,1,1.0,0,0,0.0,0.0,0,0,0,0,0,0,0 = D€ (5 + 66{% +3¢5 + 67T4H—1,—1(£13) + 57T4 H_10(z)

8 2 2 2
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Application 3: many coupled master integrals

® State of the art for heavy quark effective theory (HQET)
integrals: 3 loops [Henn, Korchemsky Marquard ’| 5]

® Here: four-loop non-planar integrals

® |/ coupled master integrals

Ki ti cosgb—m.p2 —1<x+1>
INematics — — a IR
Vrips 2 t) P \ P2
® Form of singularities:
A(x) 4 + d1(1+)+ d1(1 )
L) =1Myg— INT m1— 111 XL m_1— 111 — X
O dx L L

Solved easily (~10 min) using our algorithm.

Recently applied to four-loop cusp anomalous dimension!
[Bruser, Dlapa, Henn,Yan, 2007.04851 [hep-th] (submitted to PRL)]



Application 4: multi-variable case

® Two-loop double pentagon integrals > °
3
® Computed only | year ago using 5 I
state-of-the-art methods (e.g. D-
dimensional leading singularities) /
[Abreu, Dixon, Herrmann, Zeng ’ | 8; Chicherin, 1 4

Gehrmann, Henn,Wasser, Zhang, Zoia ’ | 8]

® 9 coupled integrals in top sector

® Four different kinematic variables

® |/ relevant alphabet letters

Our algorithm takes 5 minutes to find the UT basis on the cut.



Algorithm is efficient for many coupled

integrals, and in multi-variable case

Type of
problem

Full three- | T T
1

loop DE ... L.
]
J{
Full four- "
loop DE | >< |
HQET %

DE on cut %
Five-point TTT

t I
SrEe L]

#MI

26| 3

41 | 3

1912

17117

919

Hvars

Hletters time [min.]

17

34

Memory
[MB]

330

1710

240

390

510



Discussion

Our work provides an automated public tool for
the calculation of canonical differential equations.

It removes an important bottleneck in the
calculation of Feynman integrals.

® Our method is efficient for solving large
systems of coupled integrals

® Applies to multi-variables case

® Corollary: test of the UT property



Outlook: more complicated integrals

The idea of canonical form of differential equations
has also been explicitly applied for elliptic

polylogarithms.WVe find it conceivable that our new
ideas can be applied here as well.

‘Pre-canonical form’:

dg(x,€) = |dAo(x) + edA;1(x)] g(x,€)
[Henn ’14; Mizera, Pokraka ’ | 9]
Canonical form

Integrating out Ay introduces elliptic functions:

/—\ Beyond logarithmic kernels.

_ [Broedel, Duhr, Dulat, Penante, Tancredi ’ | 8;
d f(x,¢€) = edA(x) f(x, ) Adams and Weinzier| ’ 18]



Outlook: finite integrals (e.g. D=4)

For finite integrals, simplifications occur; and
the matrices become nilpotent [Caron-Huot, Henn *14].

Arrows represent non-

Transcendental
weight " ge . .
Zero matrix entries
2 I -5
9o 03 log 3255, 0 ; log 5 Bu T B 0 9o
] s 0 '..0.-‘ 0 lOg Bu—1 g3
P il T d =d el
Buv - 5u & - Bv “ 92 O O O log Bv"‘l 92
Buv + Bu *\ Buv + B ’.' g1 0 0 0 0 g1
)
92 g3
> O
Bu +1 By +1

Exploit simpler structure to solve larger systems!?



Thank you for your attention!



