Empirical determinations of Feynman integrals using integer relation algorithms

David Broadhurst, Open University, UK, 5 October 2020, virtually at Antidifferentiation and the Calculation of Feynman Amplitudes Integer relation algorithms empower quantum field theorists to turn numerical results into conjecturally exact evaluations of Feynman intergrals.

1. 1985: Periods in the Dark Ages
2. 1995: PSLQ in the Renaissance
3. 1999: Improvements and parallelization
4. 2009: Work on the multiple zeta value datamine
5. 2015: Periods from Erik Panzer and Oliver Schnetz
6. 2017: Periods and quasi-periods from Stefano Laporta in electrodynamics
7. 2018: Quadratic relations for all loops, found with David Roberts
8. 2020: Quadratic relations for black holes, found with Kevin Acres

1 Periods in the Dark Ages

Problem: Given numerical approximations to $n>2$ real numbers, x_{k}, is there at least one probable relation

$$
\sum_{k=1}^{n} z_{k} x_{k}=0
$$

with integers z_{k}, at least two of which are non-zero? If so, produce one.
Examples: I studied periods from 6-loop Feynman diagrams in 1985:

$$
P_{6,1}=168 \zeta_{9}, \quad P_{6,2}=\frac{1063}{9} \zeta_{9}+8 \zeta_{3}^{3}, \quad 16 P_{6,3}+P_{6,4}=1440 \zeta_{3} \zeta_{5}
$$

with Riemann zeta values $\zeta_{a}=\sum_{n>0} n^{-a}$. I had a strong intuition that $P_{6,3}$ and $P_{6,4}$ would involve ζ_{8} and the multiple zeta value (MZV)

$$
\zeta_{5,3}=\sum_{m>n>0} \frac{1}{m^{5} n^{3}}=0.03770767298484754401130478 \ldots
$$

but did not have enough digits for the periods to test this.

2 PSLQ in the Renaissance

In response to a request from Dirk Kreimer, I obtained $P_{6,3}=256 N_{3,5}+72 \zeta_{3} \zeta_{5}$ and $P_{6,4}=-4096 N_{3,5}+288 \zeta_{3} \zeta_{5}$, with

$$
N_{3,5}=\frac{27}{80} \zeta_{5,3}+\frac{45}{64} \zeta_{3} \zeta_{5}-\frac{261}{320} \zeta_{8}
$$

found by PSLQ, after more digits were obtained for the periods.
We found $\zeta_{3,5,3}$, with weight 11 and depth 3 , in some 7 -loop periods.
Much experimenting with PSLQ led to the Broadhurst-Kreimer (BK) conjecture that the number $N(w, d)$ of independent primitive MZVs of weight w and depth d is generated by

$$
\prod_{w>2} \prod_{d>0}\left(1-x^{w} y^{d}\right)^{N(w, d)}=1-\frac{x^{3} y}{1-x^{2}}+\frac{x^{12} y^{2}\left(1-y^{2}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)}
$$

with a final term inferred by relating MZVs to alternating sums.

2.1 PSLQ: Partial Sums, Lower triangular, orthogonal Quotient

PSLQ came from work by Helaman Ferguson and Rodney Forcade in 1977, implemented in multiple-precision ForTran by David Bailey in 1992, improved and parallelized in 1999. See Bailey and Broadhurst, Parallel Integer Relation Detection: Techniques and Applications, Math. Comp. 70 (2001), 1719-1736.

Initialization:

1. For $j:=1$ to n : for $i:=1$ to n : if $i=j$ then set $A_{i j}:=1$ and $B_{i j}:=1$ else set $A_{i j}:=0$ and $B_{i j}:=0$; endfor; endfor.
2. For $k:=1$ to n : set $s_{k}:=\operatorname{sqrt}\left(\sum_{j=k}^{n} x_{j}^{2}\right)$; endfor. Set $t=1 / s_{1}$. For $k:=1$ to n : set $y_{k}:=t x_{k} ; s_{k}:=t s_{k}$; endfor.
3. For $j:=1$ to $n-1$: for $i:=1$ to $j-1$: set $H_{i j}:=0$; endfor; set $H_{j j}:=s_{j+1} / s_{j}$; for $i:=j+1$ to n : set $H_{i j}:=-y_{i} y_{j} /\left(s_{j} s_{j+1}\right)$; endfor; endfor.
4. For $i:=2$ to n : for $j:=i-1$ to 1 step -1 : set $t:=\operatorname{round}\left(H_{i j} / H_{j j}\right)$;
$y_{j}:=y_{j}+t y_{i}$; for $k:=1$ to $j:$ set $H_{i k}:=H_{i k}-t H_{j k}$; endfor; for $k:=1$ to n : set $A_{i k}:=A_{i k}-t A_{j k}, B_{k j}:=B_{k j}+t B_{k i}$; endfor; endfor; endfor.

Iteration:

1. Select m such that $(\mathbf{4} / \mathbf{3})^{i / 2}\left|H_{i i}\right|$ is maximal when $i=m$. Swap the entries of y indexed m and $m+1$, the corresponding rows of A and H, and the corresponding columns of B.
2. If $m \leq n-2$ then set $t_{0}:=\operatorname{sqrt}\left(H_{m m}^{2}+H_{m, m+1}^{2}\right), t_{1}:=H_{m m} / t_{0}$ and $t_{2}:=H_{m, m+1} / t_{0}$; for $i:=m$ to $n:$ set $t_{3}:=H_{i m}, t_{4}:=H_{i, m+1}, H_{i m}:=t_{1} t_{3}+t_{2} t_{4}$ and $H_{i, m+1}:=-t_{2} t_{3}+t_{1} t_{4}$; endfor; endif.
3. For $i:=m+1$ to n : for $j:=\min (i-1, m+1)$ to 1 step -1 : set $t:=\operatorname{round}\left(H_{i j} / H_{j j}\right)$ and $y_{j}:=y_{j}+t y_{i} ;$ for $k:=1$ to $j:$ set $H_{i k}:=H_{i k}-t H_{j k}$; endfor; for $k:=1$ to n : set $A_{i k}:=A_{i k}-t A_{j k}$ and $B_{k j}:=B_{k j}+t B_{k i}$; endfor; endfor; endfor.
4. If the largest entry of A exceeds the precision, then fail, else if a component of the y vector is very small, then output the relation from the corresponding column of B, else go back to Step 1.

For big problems, the parallelization of PSLQ has been vital, especially for the magnetic moment of the electron. For smaller problems, there is an alternative.

2.2 LLL

In 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász gave the LLL algorithm for lattice reduction to a basis with short and almost orthogonal components. An extension of this underlies lindep in Pari-GP.
\$ Z53=0.03770767298484754401130478;
\$ P63=107.71102484102;
\$ V=[P63,Z53,zeta(3)*zeta(5),zeta(8)];
\$ for(d=10,16,U=lindep(V,d);U*=sign(U[1]);print([d, $\left.\left.\left.\mathrm{U}^{\sim}\right]\right)\right)$;
[10, [12, 44, -936, -127]]
[11, [4, -827, -460, 173]]
[12, [4, -827, $-460,173]]$
[13, [4, -827, $-460,173]]$
[14, [5, -432, -1260, 1044]]
[15, [5, -432, -1260, 1044]]
[16, [196, 1652, -9701, -9045]]

3 Improvements and parallelization

Multi-level improvement: perform most operations at 64-bit precision, some at intermediate precision (we chose 125 digits) and only the bare minimum of the most delicate operations at full precision (more than 10000 digits, for some big problems).

Multi-pair improvement: swap up to $0.4 n$ disjoint pairs of the n indices at each iteration. In this case, it is not proven that the algorithm will succeed, but it ain't yet been found to fail.

Parallelization: distribute the disjoint-pair jobs; for each pair, distribute the full-precision matrix multiplication in the outermost loop.

3.1 Fourth bifurcation of the logistic map

Working at $\mathbf{1 0 0 0 0}$ digits, we found that the constant associated with the fourth bifurcation is the root of a polynomial of degree $\mathbf{2 4 0}$.

3.2 Alternating sums

We tested my conjecture on alternating sums defined by

$$
\zeta\left(\begin{array}{llll}
s_{1}, & s_{2} & \cdots & s_{r} \\
\sigma_{1}, & \sigma_{2} & \cdots & \sigma_{r}
\end{array}\right)=\sum_{k_{1}>k_{2}>\cdots>k_{r}>0} \frac{\sigma_{1}^{k_{1}}}{k_{1}^{s_{1}}} \frac{\sigma_{2}^{k_{2}}}{k_{2}^{s_{2}}} \cdots \frac{\sigma_{r}^{k_{r}}}{k_{r}^{s_{r}}}
$$

where $\sigma_{j}= \pm 1$ are signs and $s_{j}>0$ are integers, namely that at weight $w=\sum_{j} s_{j}$ every alternating sum is a rational linear combination of elements of a basis of size $F_{w+1}=F_{w}+F_{w-1}$, i.e. the Fibonacci number with index $w+1$. At $w=11$, integer relations of size $n=F_{12}+1=\mathbf{1 4 5}$ were found, at $\mathbf{5 0 0 0}$-digit precision.

3.3 Inverse binomial sums

Noting that $S(4)=\frac{17}{36} \zeta_{4}$, I conjectured that

$$
S(w)=\sum_{n=1}^{\infty} \frac{1}{n^{w}\binom{2 n}{n}}
$$

is reducible to weigth w nested sums that involve sixth roots of unity, i.e. with $\sigma_{j}^{6}=1$, above. This was confirmed for all weights $w \leq 20$, with
$525990827847624469523748125835264000 \times S(20)$ given by 106 terms.

4
 Work on the multiple zeta value datamine

The BK conjecture was a rash leap based on a PSLQ dicovery:

$$
\begin{aligned}
& 2^{5} \cdot 3^{3} \zeta_{4,4,2,2}-2^{14} \sum_{m>n>0} \frac{(-\mathbf{1})^{m+n}}{\left(m^{3} n\right)^{3}}= \\
& \quad 2^{5} \cdot 3^{2} \zeta_{3}^{4}+2^{6} \cdot 3^{3} \cdot 5 \cdot 13 \zeta_{9} \zeta_{3}+2^{6} \cdot 3^{3} \cdot 7 \cdot 13 \zeta_{7} \zeta_{5} \\
& +2^{7} \cdot 3^{5} \zeta_{7} \zeta_{3} \zeta_{2}+2^{6} \cdot 3^{5} \zeta_{5}^{2} \zeta_{2}-2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \zeta_{5} \zeta_{4} \zeta_{3} \\
& -2^{8} \cdot 3^{2} \zeta_{6} \zeta_{3}^{2}-\frac{13177 \cdot 15991}{691} \zeta_{12} \\
& +2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \zeta_{6,2} \zeta_{4}-2^{7} \cdot 3^{3} \zeta_{8,2} \zeta_{2}-2^{6} \cdot 3^{2} \cdot 11^{2} \zeta_{10,2}
\end{aligned}
$$

is reducible to MZVs of depth $d \leq 2$ and their products. It means that $\zeta_{4,4,2,2}$ is pushed down to depth $d=2$, if we allow alternating sums in the MZV basis. When constructing the MZV datamine, Johannes Blümlein and Jos
Vermaseren and I were able to prove this by massive use of computer algebra. It is harder to prove my discovery of pushdown at weight 21 and depth 7 , where

$$
81 \zeta_{6,2,3,3,5,1,1}+326 \sum_{j>k>l>m>n>0} \frac{(-\mathbf{1})^{k+m}}{\left(j k^{2} l m^{2} n\right)^{3}}
$$

is empirically reducible to $\mathbf{1 5 0}$ terms containing MZVs of depths $d \leq 5$.

5 Periods from Panzer and Schnetz

I found empirical reductions to MZVs for a pair of 7-loop periods

$$
\begin{aligned}
P_{7,8}= & \frac{22383}{20} \zeta_{11}+\frac{4572}{5}\left(\zeta_{3,5,3}-\zeta_{3} \zeta_{5,3}\right)-700 \zeta_{3}^{2} \zeta_{5} \\
& +1792 \zeta_{3}\left(\frac{9}{320}\left(12 \zeta_{5,3}-29 \zeta_{8}\right)+\frac{45}{64} \zeta_{5} \zeta_{3}\right) \\
P_{7,9}= & \frac{92943}{160} \zeta_{11}+\frac{3381}{20}\left(\zeta_{3,5,3}-\zeta_{3} \zeta_{5,3}\right)-\frac{1155}{4} \zeta_{3}^{2} \zeta_{5} \\
& +896 \zeta_{3}\left(\frac{9}{320}\left(12 \zeta_{5,3}-29 \zeta_{8}\right)+\frac{45}{64} \zeta_{5} \zeta_{3}\right)
\end{aligned}
$$

that had been expected to involve alternating sums. These results were later proven, one by Erik Panzer and the other by Oliver Schnetz. They obtained complicated combinations of alternating sums which then gave my MZV formulas by use of proven results in the datamine.

The period from this 7-loop diagram is called $P_{7,11}$ in the census of Schnetz. All other periods up to 7 loops reduce to MZVs; only $P_{7,11}$ requires nested sums with sixth roots of unity. Panzer evaluated $\sqrt{3} P_{7,11}$ in terms of 4589 such sums, each of which he evaluated to 5000 digits. Then he found an empirical reduction to a 72 -dimensional basis. The rational coefficient of π^{11} in his result was

$$
C_{11}=-\frac{964259961464176555529722140887}{2733669078108291387021448260000}
$$

whose denominator contains 8 primes greater than 11, namely 19, 31, 37, 43, 71, 73,50909 and 121577.
I built an empirical datamine to enable substantial simplification.

Let $A=\mathrm{d} \log (x), B=-\mathrm{d} \log (1-x)$ and $D=-\mathrm{d} \log (1-\exp (2 \pi \mathrm{i} / 6) x)$ be letters, forming words W that define iterated integrals $Z(W)$. Let

$$
W_{m, n}=\sum_{k=0}^{n-1} \frac{\zeta_{3}^{k}}{k!} A^{m-2 k} D^{n-k}
$$

$$
\begin{aligned}
P_{n}=(\pi / 3)^{n} / n!, & I_{n}=\mathrm{Cl}_{n}(2 \pi / 3) \text { and } I_{a, b}=\Im Z\left(A^{b-a-1} D A^{2 a-1} B\right) . \text { Then } \\
\sqrt{3} P_{7,11} & =-10080 \Im Z\left(W_{7,4}+W_{7,2} P_{2}\right)+50400 \zeta_{3} \zeta_{5} P_{3} \\
& +\left(35280 \Re Z\left(W_{8,2}\right)+\frac{46130}{9} \zeta_{3} \zeta_{7}+17640 \zeta_{5}^{2}\right) P_{1} \\
& -13277952 T_{2,9}-7799049 T_{3,8}+\frac{6765337}{2} I_{4,7}-\frac{583765}{6} I_{5,6} \\
& -\frac{121905}{4} \zeta_{3} I_{8}-93555 \zeta_{5} I_{6}-102060 \zeta_{7} I_{4}-141120 \zeta_{9} I_{2} \\
& +\frac{42452687872649}{6} P_{11}
\end{aligned}
$$

with the datamine transformations

$$
\begin{aligned}
& I_{2,9}=91\left(11 T_{2,9}\right)-898 T_{3,8}+11 I_{4,7}-292 P_{11} \\
& I_{3,8}=24\left(11 T_{2,9}\right)+841 T_{3,8}-190 I_{4,7}-255 P_{11}
\end{aligned}
$$

removing denominator primes greater than 3 .

6 Periods and quasi-periods from Laporta

The magnetic moment of the electron, in Bohr magnetons, has electrodynamic contributions $\sum_{L \geq 0} a_{L}(\alpha / \pi)^{L}$ given up to $L=4$ loops by

$$
\begin{aligned}
a_{0} & =1 \quad[\text { Dirac, 1928] } \\
a_{1} & =0.5 \quad[\text { Schwinger, 1947] } \\
a_{2} & =-0.32847896557919378458217281696489239241111929867962 \ldots \\
a_{3} & =1.18124145658720000627475398221287785336878939093213 \ldots \\
a_{4} & =-1.91224576492644557415264716743983005406087339065872 \ldots
\end{aligned}
$$

In 1957, corrections by Petermann and Sommerfield resulted in

$$
a_{2}=\frac{197}{144}+\frac{\zeta_{2}}{2}+\frac{3 \zeta_{3}-2 \pi^{2} \log 2}{4} .
$$

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

$$
\begin{aligned}
a_{3}= & \frac{28259}{5184}+\frac{17101 \zeta_{2}}{135}+\frac{139 \zeta_{3}-596 \pi^{2} \log 2}{18} \\
& -\frac{39 \zeta_{4}+400 U_{3,1}}{24}-\frac{215 \zeta_{5}-166 \zeta_{3} \zeta_{2}}{24} .
\end{aligned}
$$

The 3-loop contribution contains a weight-4 depth-2 polylogarithm

$$
U_{3,1}=\sum_{m>n>0} \frac{(-1)^{m+n}}{m^{3} n}=\frac{\zeta_{4}}{2}+\frac{\left(\pi^{2}-\log ^{2} 2\right) \log ^{2} 2}{12}-2 \sum_{n>0} \frac{1}{2^{n} n^{4}}
$$

encountered in my study of alternating sums [arXiv:hep-th/9611004].
Equally fascinating is the Bessel moment B, at weight 4, in the breath-taking evaluation by Laporta [arXiv:1704.06996] of $\mathbf{4 8 0 0}$ digits of

$$
a_{4}=P+B+E+U \approx 2650.565-1483.685-1036.765-132.027 \approx-1.912
$$

where P comprises polylogs and E comprises integrals, with weights 5,6 and 7 , whose integrands contain logs and products of elliptic integrals.
U comes from 6 light-by-light integrals, still under investigation.
The weight-4 non-polylogarithm at 4 loops has $N=6$ Bessel functions:

$$
B=-\int_{0}^{\infty} \frac{27550138 t+35725423 t^{3}}{48600} I_{0}(t) K_{0}^{5}(t) \mathrm{d} t
$$

6.1 Bessel moments and modular forms

Gauss noted on 30 May 1799 that the lemniscate constant

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{4}}}=\frac{(\Gamma(1 / 4))^{2}}{4 \sqrt{2 \pi}}=\frac{\pi / 2}{\operatorname{agm}(1, \sqrt{2})}
$$

is given by the reciprocal of an arithmetic-geometric mean. This is an example of the Chowla-Selberg formula (1949) at the first singular value. In 1939, Watson encountered the sixth singular value, in work on integrals from condensed matter physics. Here, $\left(\sum_{n \in \mathbf{Z}} \exp \left(-\sqrt{\mathbf{6}} \pi n^{2}\right)\right)^{4}$ gives the product of $\Gamma(k / \mathbf{2 4})$ with $k=1,5,7,11$, as observed by Glasser and Zucker in 1977. In 2007, I identified a Feynman period at the fifteenth singular value, where $\left(\sum_{n \in \mathbf{Z}} \exp \left(-\sqrt{\mathbf{1 5}} \pi n^{2}\right)\right)^{4}$ gives the product of $\Gamma(k / \mathbf{1 5})$ with $k=1,2,4,8$.
With $N=a+b$ Bessel functions and $c \geq 0$, I define moments

$$
M(a, b, c)=\int_{0}^{\infty} I_{0}^{a}(t) K_{0}^{b}(t) t^{c} \mathrm{~d} t
$$

that converge for $b>a>0$. Then the 5 -Bessel matrix is

$$
\left[\begin{array}{ll}
M(1,4,1) & M(1,4,3) \\
M(2,3,1) & M(2,3,3)
\end{array}\right]=\left[\begin{array}{cr}
\pi^{2} C & \pi^{2}\left(\frac{2}{15}\right)^{2}\left(13 C-\frac{1}{10 C}\right) \\
\frac{\sqrt{15 \pi} C}{2} C & \frac{\sqrt{15 \pi}}{2}\left(\frac{2}{15}\right)^{2}\left(13 C+\frac{1}{10 C}\right)
\end{array}\right] .
$$

The determinant $2 \pi^{3} / \sqrt{3^{3} 5^{5}}$ is free of the 3-loop constant

$$
C=\frac{\pi}{16}\left(1-\frac{1}{\sqrt{5}}\right)\left(\sum_{n=-\infty}^{\infty} \exp \left(-\sqrt{\mathbf{1 5}} \pi n^{2}\right)\right)^{4}=\frac{1}{240 \sqrt{5} \pi^{2}} \prod_{k=0}^{3} \Gamma\left(\frac{2^{k}}{\mathbf{1 5}}\right) .
$$

The L-series for $N=5$ Bessel functions comes from a modular form of weight $\mathbf{3}$ and level $\mathbf{1 5}$ [arXiv:1604.03057]:

$$
\begin{aligned}
\eta_{n} & =q^{n / 24} \prod_{k>0}\left(1-q^{n k}\right), \quad q=\exp (2 \pi \mathrm{i} \tau), \\
f_{3,15}(\tau) & =\left(\eta_{3} \eta_{5}\right)^{3}+\left(\eta_{1} \eta_{15}\right)^{3}=\sum_{n>0} A_{5}(n) q^{n} \\
L_{5}(s) & =\sum_{n>0} \frac{A_{5}(n)}{n^{s}} \quad \text { for } s>2 \\
L_{5}(1) & =\sum_{n>0} \frac{A_{5}(n)}{n}\left(2+\frac{\sqrt{\mathbf{1 5}}}{2 \pi n}\right) \exp \left(-\frac{2 \pi n}{\sqrt{\mathbf{1 5}}}\right) \\
& =5 C=\frac{5}{\pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{4}(t) t \mathrm{~d} t .
\end{aligned}
$$

6.2 Periods and quasi-periods for the Laporta problem

Laporta's work engages the first row of the 6-Bessel determinant

$$
\operatorname{det}\left[\begin{array}{ll}
M(1,5,1) & M(1,5,3) \\
M(2,4,1) & M(2,4,3)
\end{array}\right]=\frac{5 \zeta_{4}}{32}
$$

associated to a modular form $f_{4,6}(\tau)=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$ with weight 4 and level $\mathbf{6}$. At top left we have $M(1,5,1)$, from the on-shell 4-loop sunrise diagram, in two spacetime dimensions. Below it, $M(2,4,1)$ comes from cutting an internal line. The second column comes from differentiating the first, with respect to the external momentum, to produce quasi-periods associated with a weakly holomorphic modular form

$$
\widehat{f}_{4,6}(\tau)=\mu f_{4,6}(\tau), \quad \mu=\frac{1}{32}\left(w+\frac{3}{w}\right)^{4}-\frac{9}{16}\left(w+\frac{3}{w}\right)^{2}, \quad w=\frac{3 \eta_{3}^{4} \eta_{2}^{2}}{\eta_{1}^{4} \eta_{6}^{2}}
$$

With $s=1,2$, I computed compute 10,000 digits of the Eichler lintegrals

$$
\frac{\Omega_{s}}{(2 \pi)^{s}}=\int_{1 / \sqrt{3}}^{\infty} f_{4,6}\left(\frac{1+\mathrm{i} y}{2}\right) y^{s-1} d y, \quad \frac{\widehat{\Omega}_{s}}{(2 \pi)^{s}}=\int_{1 / \sqrt{3}}^{\infty} \widehat{f}_{4,6}\left(\frac{1+\mathrm{i} y}{2}\right) y^{s-1} d y
$$

6.3 Laporta's intersection number

LLL readily gave me 4 linear relations

$$
\frac{2}{\pi^{2}}\left[\begin{array}{cc}
4 M_{0,0}(1) & \frac{36}{5}\left(M_{0,0}(1)+M_{0,1}(1)\right) \\
\frac{5}{3} M_{1,0}(1) & 3\left(M_{1,0}(1)+M_{1,1}(1)\right)
\end{array}\right]=\left[\begin{array}{cc}
-\Omega_{2} & \widehat{\Omega}_{2} \\
-\Omega_{1} & \widehat{\Omega}_{1}
\end{array}\right]
$$

between Feynman integrals, the periods $\Omega_{1,2}$ and the quasi-periods $\widehat{\Omega}_{1,2}$. The intersection number is the determinant of this matrix, namely $1 / 12$. David Roberts and I converted this into a quadratic relation between hypergeometeric series:

$$
\left.\begin{array}{lrrrrrrr}
F_{a}={ }_{4} F_{3}(r & 1 / 2, & 2 / 3, & 2 / 3, & 5 / 6 ; & 7 / 6, & 7 / 6, & 4 / 3 ; \\
F_{b}={ }_{4} F_{3}(-1 / 2, & 1 / 6, & 1 / 3, & 4 / 3 ; & -1 / 6, & 5 / 6, & 5 / 3 ; & 1) \\
F_{c}={ }_{4} F_{3}(& 1 / 6, & 1 / 3, & 1 / 3, & 1 / 2 ; & 2 / 3, & 5 / 6, & 5 / 6 ;
\end{array}\right)
$$

namely

$$
7 F_{a} F_{b}+10 F_{c} F_{d}=40
$$

7 Quadratic relations for all loops

Conjecture: [Broadhurst and Roberts] With the Feynman, de Rham and Betti matrices below, we conjecture that

$$
F_{N} D_{N} F_{N}^{\mathrm{tr}}=B_{N} .
$$

The elements of the Feynman matrices F_{N} are the Bessel moments

$$
\begin{aligned}
& F_{2 k+1}(u, a)=\frac{(-1)^{a-1}}{\pi^{u}} M(k+1-u, k+u, 2 a-1) \\
& F_{2 k+2}(u, a)=\frac{(-1)^{a-1}}{\pi^{u+1 / 2}} M(k+1-u, k+1+u, 2 a-1)
\end{aligned}
$$

with u and a, as well as later indices v and b, running from 1 to $k . F_{N}^{\mathrm{tr}}$ is the transpose of F_{N}. The Betti matrices B_{N} have rational elements given by

$$
\begin{aligned}
B_{2 k+1}(u, v) & =(-1)^{u+k} 2^{-2 k-2}(k+u)!(k+v)!Z(u+v) \\
B_{2 k+2}(u, v) & =(-1)^{u+k} 2^{-2 k-3}(k+u+1)!(k+v+1)!Z(u+v+1) \\
Z(m) & =\frac{1+(-1)^{m}}{(2 \pi)^{m}} \zeta(m)
\end{aligned}
$$

For the de Rham matrices D_{N}, let v_{k} and w_{k} be the rationals generated by

$$
\begin{aligned}
\frac{J_{0}^{2}(t)}{C(t)} & =\sum_{k \geq 0} \frac{v_{k}}{k!}\left(\frac{t}{2}\right)^{2 k}=1-\frac{17 t^{2}}{54}+\frac{3781 t^{4}}{186624}+\ldots \\
\frac{2 J_{0}(t) J_{1}(t)}{t C(t)} & =\sum_{k \geq 0} \frac{w_{k}}{k!}\left(\frac{t}{2}\right)^{2 k}=1-\frac{41 t^{2}}{216}+\frac{325 t^{4}}{186624}+\ldots
\end{aligned}
$$

where $J_{0}(t)=I_{0}(\mathrm{i} t), J_{1}(t)=-J_{0}^{\prime}(t)$ and

$$
C(t)=\frac{32\left(1-J_{0}^{2}(t)-t J_{0}(t) J_{1}(t)\right)}{3 t^{4}}=1-\frac{5 t^{2}}{27}+\frac{35 t^{4}}{2304}-\frac{7 t^{6}}{9600}+\ldots
$$

Construct rational bivariate polynomials $H_{s}=H_{s}(y, z)$ by the recursion

$$
H_{s}=z H_{s-1}-(s-1) y H_{s-2}-\sum_{k=1}^{s-1}\binom{s-1}{k}\left(v_{k} H_{s-k}-w_{k} z H_{s-k-1}\right)
$$

for $s>0$, with $H_{0}=1$ and $H_{-1}=0$. Use these to define

$$
d_{s}(N, c)=\frac{H_{s}(3 c / 2, N+2-2 c)}{4^{s} s!} .
$$

Finally, construct de Rham matrices with the rational elements

$$
D_{N}(a, b)=\sum_{c=-b}^{a} d_{a-c}(N,-c) d_{b+c}(N, c) c^{N+1}
$$

7.1 Remarks

1. The discovery of this formula for the coefficients of these quadratic relations involved intensive use of LLL, at high numerical precision. At 20 loops, there are 100 Feynman integrals to consider. We claim to have found all of the quadratic relations between their 5050 products.
2. Javier Fresán, Claude Sabbah and Jeng-Daw Yu have verified that our formulas hold up to 20 loops, after which they ran out of computing power.
3. They encountered subtleties when N is divisible 4. These are entirely avoided by our uniform formula.
4. Last month, at Elliptics20, Roman Lee announced that he is able to generate our de Rham matrices iteratively and check our claim up to some modest number of loops that is limited by his computing power.

8
 Quadratic relations for black holes

Last December, Philip Candelas, Xenia de la Ossa, Mohamed Elmi and Duco van Straten announced a remarkable discovery of A One Parameter Family of Calabi-Yau Manifolds with Attractor Points of Rank Two [arXiv:1912.06146].
They compactified a 10 -dimensional supergravity theory on a Calabi-Yau three-fold with complex structure, to obtain 4-dimensional black holes, with event horizons whose areas are determined by their electric and magnetic charges and by ratios of periods of modular forms of weight 4 and levels $\mathbf{1 4}$ or $\mathbf{3 4}$. Hearing of this on a visit to Oxford, in November, I observed that their Calabi-Yau periods come from solutions to a homogeneous differential equation associated with 4 loop sunrise integrals, namely

$$
\begin{aligned}
M_{m, n}(z) & =\int_{0}^{\infty} I_{0}(x z)\left[I_{0}(x)\right]^{m}\left[K_{0}(x)\right]^{5-m} x^{2 n+1} \mathrm{~d} x \\
N_{m, n}(z) & =z \int_{0}^{\infty} I_{1}(x z)\left[I_{0}(x)\right]^{m}\left[K_{0}(x)\right]^{5-m} x^{2 n+2} \mathrm{~d} x
\end{aligned}
$$

with $m \in\{0,1,2\}$, integers $n \geq 0$ and real $z^{2}<(5-2 m)^{2}$. The uncut diagram gives $M_{0,0}(z)$ and satisfies an inhomogeneous differential equation.

The external mass is z. At $z=1$ we obtain Laporta's on-shell periods, for the magnetic moment of the electron at 4 loops, coming from the modular form $f_{4,6}(\tau)=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$ with level 6 . With mass $z=\sqrt{\mathbf{1 7}}-4$, I obtained level 34 periods. At the space-like point $z=\sqrt{-7}$, I obtained level 14 periods.
Candelas et al. were unable to identify all of the 16 Calabi-Yau periods. At each of the levels 14 and 34, I found that are given by 8 Feynman integrals, satisfying two quadratic relations. These 8 integrals determine a pair of periods and a pair of quasi-periods at each of the weights 2 and 4 .
Here I indicate the situation at level 14, where I identified

$$
f_{4,14}(\tau)=\frac{\left(\eta_{2} \eta_{7}\right)^{6}}{\left(\eta_{1} \eta_{14}\right)^{2}}-4\left(\eta_{1} \eta_{2} \eta_{7} \eta_{14}\right)^{2}+\frac{\left(\eta_{1} \eta_{14}\right)^{6}}{\left(\eta_{2} \eta_{7}\right)^{2}}
$$

as the relevant modular form of weight 4. Its periods are critical values of the L-function $L\left(f_{4,14}, s\right)=\left((2 \pi)^{s} / \Gamma(s)\right) \int_{0}^{\infty} f_{4,14}(\mathrm{i} y) y^{s-1} \mathrm{~d} y$, with

$$
\begin{aligned}
L\left(f_{4,14}, 3\right) & =M_{1,0}(\sqrt{-7})=\int_{0}^{\infty} J_{0}(\sqrt{7} x) I_{0}(x) K_{0}^{4}(x) x \mathrm{~d} x=\frac{\pi^{2}}{7} L\left(f_{4,14}, 1\right) \\
\frac{1}{2} L\left(f_{4,14}, 2\right) & =M_{2,0}(\sqrt{-7})=\int_{0}^{\infty} J_{0}(\sqrt{7} x) I_{0}^{2}(x) K_{0}^{3}(x) x \mathrm{~d} x
\end{aligned}
$$

There is also a modular form of weight 2 to consider, $f_{2,14}(\tau)=\eta_{1} \eta_{2} \eta_{7} \eta_{14}$. This provides a modular parametrization of a quartic elliptic curve, namely

$$
\begin{aligned}
d^{2} & =(1+h)(1+8 h)\left(1+5 h+8 h^{2}\right) \\
h & =\left(\frac{\eta_{2} \eta_{14}}{\eta_{1} \eta_{7}}\right)^{3}=q+3 q^{2}+6 q^{3}+13 q^{4}+O\left(q^{5}\right) \\
d & =\frac{q}{f_{2,14}} \frac{\mathrm{~d} h}{\mathrm{~d} q}=1+7 q+27 q^{2}+92 q^{3}+259 q^{4}+O\left(q^{5}\right)
\end{aligned}
$$

At weight 2, we obtain complete elliptic integrals.
From my work with Kevin Acres on Rademacher sums, I was able to determine a weakly holomorphic form that gives the weight-4 quasi-periods. The space of cuspforms is 4 -dimensional and we had to solve a $\mathbf{4 \times 1 0}$ matrix problem, with each of the 4 associated weakly holomorphic forms obtained by multiplying $f_{2,14}^{2}$ by a polynomial that is linear in d and quartic in h.
The published chapter will give details of a more demanding problem solved by LLL, at weight 6 and level 24 , where the space of cuspforms is $\mathbf{1 6}$-dimensional.

Summary

1. PSLQ and LLL have enlivened quests for analytical results.
2. PSLQ led to the Broadhurst-Kreimer conjecture.
3. PSLQ has been parallelized.
4. PSLQ and LLL have provided strong tests on conjectures.
5. PSLQ and LLL have condensed huge expressions.
6. Parallel PSLQ was of the essence in Laporta's work in electrodynamics.
7. LLL led to a conjecture on quadratic relations for all loops.
8. LLL led to exact results for the black hole problem.

I thank generous hosts for meetings in Amsterdam, Berlin, Bonn, Cambridge, Copenhagen, Creswick (Victoria), Durham, Edinburgh, Florence, Leipzig, Les Houches, Linz, Madrid, Mainz, Marseille, Newcastle (NSW), Oxford, Padova, Paris, Pisa, Potsdam, Seoul, St Goar, Vienna, Weimar, Zeuthen, Zurich.

