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1 Periods in the Dark Ages

Problem: Given numerical approximations to n > 2 real numbers, xk, is there
at least one probable relation

n∑
k=1

zkxk = 0

with integers zk, at least two of which are non-zero? If so, produce one.

Examples: I studied periods from 6-loop Feynman diagrams in 1985:

P6,1 = 168ζ9, P6,2 =
1063

9
ζ9 + 8ζ33 , 16P6,3 + P6,4 = 1440ζ3ζ5

with Riemann zeta values ζa =
∑

n>0 n
−a. I had a strong intuition that P6,3 and

P6,4 would involve ζ8 and the multiple zeta value (MZV)

ζ5,3 =
∑

m>n>0

1

m5n3
= 0.03770767298484754401130478 . . .

but did not have enough digits for the periods to test this.
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2 PSLQ in the Renaissance

In response to a request from Dirk Kreimer, I obtained P6,3 = 256N3,5 + 72ζ3ζ5
and P6,4 = −4096N3,5 + 288ζ3ζ5, with

N3,5 =
27

80
ζ5,3 +

45

64
ζ3ζ5 −

261

320
ζ8

found by PSLQ, after more digits were obtained for the periods.

We found ζ3,5,3, with weight 11 and depth 3, in some 7-loop periods.

Much experimenting with PSLQ led to the Broadhurst-Kreimer (BK) conjecture
that the number N(w, d) of independent primitive MZVs of weight w and
depth d is generated by∏

w>2

∏
d>0

(1− xwyd)N(w,d) = 1− x3y

1− x2
+

x12y2(1− y2)
(1− x4)(1− x6)

with a final term inferred by relating MZVs to alternating sums.
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2.1 PSLQ: Partial Sums, Lower triangular, orthogonal Quotient

PSLQ came from work by Helaman Ferguson and Rodney Forcade in 1977,
implemented in multiple-precision ForTran by David Bailey in 1992, improved
and parallelized in 1999. See Bailey and Broadhurst, Parallel Integer Relation
Detection: Techniques and Applications, Math. Comp. 70 (2001), 1719–1736.
Initialization:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set
Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk := sqrt
(∑n

j=k x
2
j

)
; endfor. Set t = 1/s1.

For k := 1 to n: set yk := txk; sk := tsk; endfor.

3. For j := 1 to n− 1: for i := 1 to j − 1: set Hij := 0; endfor;
set Hjj := sj+1/sj; for i := j + 1 to n: set Hij := −yiyj/(sjsj+1); endfor;
endfor.

4. For i := 2 to n: for j := i− 1 to 1 step −1: set t := round(Hij/Hjj);
yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk; endfor;
for k := 1 to n: set Aik := Aik − tAjk, Bkj := Bkj + tBki; endfor; endfor;
endfor.
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Iteration:

1. Select m such that (4/3)i/2|Hii| is maximal when i = m. Swap the entries of
y indexed m and m+ 1, the corresponding rows of A and H, and the
corresponding columns of B.

2. If m ≤ n− 2 then set t0 := sqrt(H2
mm +H2

m,m+1), t1 := Hmm/t0 and
t2 := Hm,m+1/t0; for i := m to n: set t3 := Him, t4 := Hi,m+1, Him := t1t3 + t2t4
and Hi,m+1 := −t2t3 + t1t4; endfor; endif.

3. For i := m+ 1 to n: for j := min(i− 1,m+ 1) to 1 step −1: set
t := round(Hij/Hjj) and yj := yj + tyi; for k := 1 to j: set Hik := Hik − tHjk;
endfor; for k := 1 to n: set Aik := Aik − tAjk and Bkj := Bkj + tBki; endfor;
endfor; endfor.

4. If the largest entry of A exceeds the precision, then fail, else if a component
of the y vector is very small, then output the relation from the corresponding
column of B, else go back to Step 1.
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For big problems, the parallelization of PSLQ has been vital, especially for the
magnetic moment of the electron. For smaller problems, there is an alternative.

2.2 LLL

In 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász gave the LLL
algorithm for lattice reduction to a basis with short and almost orthogonal
components. An extension of this underlies lindep in Pari-GP.

$ Z53=0.03770767298484754401130478;

$ P63=107.71102484102;

$ V=[P63,Z53,zeta(3)*zeta(5),zeta(8)];

$ for(d=10,16,U=lindep(V,d);U*=sign(U[1]);print([d,U~]));

[10, [12, 44, -936, -127]]

[11, [4, -827, -460, 173]]

[12, [4, -827, -460, 173]]

[13, [4, -827, -460, 173]]

[14, [5, -432, -1260, 1044]]

[15, [5, -432, -1260, 1044]]

[16, [196, 1652, -9701, -9045]]
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3 Improvements and parallelization

Multi-level improvement: perform most operations at 64-bit precision, some at
intermediate precision (we chose 125 digits) and only the bare minimum of the
most delicate operations at full precision (more than 10000 digits, for some big
problems).

Multi-pair improvement: swap up to 0.4n disjoint pairs of the n indices at each
iteration. In this case, it is not proven that the algorithm will succeed, but it ain’t
yet been found to fail.

Parallelization: distribute the disjoint-pair jobs; for each pair, distribute the
full-precision matrix multiplication in the outermost loop.

3.1 Fourth bifurcation of the logistic map

Working at 10000 digits, we found that the constant associated with the fourth
bifurcation is the root of a polynomial of degree 240.

7



3.2 Alternating sums

We tested my conjecture on alternating sums defined by

ζ

(
s1, s2 · · · sr
σ1, σ2 · · · σr

)
=

∑
k1>k2>···>kr>0

σk11
ks11

σk22
ks22
· · · σ

kr
r

ksrr

where σj = ±1 are signs and sj > 0 are integers, namely that at weight w =
∑

j sj
every alternating sum is a rational linear combination of elements of a basis of size
Fw+1 = Fw + Fw−1, i.e. the Fibonacci number with index w + 1. At w = 11,
integer relations of size n = F12 + 1 = 145 were found, at 5000-digit precision.

3.3 Inverse binomial sums

Noting that S(4) = 17
36ζ4, I conjectured that

S(w) =
∞∑
n=1

1

nw
(
2n
n

)
is reducible to weigth w nested sums that involve sixth roots of unity, i.e. with
σ6j = 1, above. This was confirmed for all weights w ≤ 20, with
525990827847624469523748125835264000×S(20) given by 106 terms.
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4 Work on the multiple zeta value datamine

The BK conjecture was a rash leap based on a PSLQ dicovery:

25 · 33ζ4,4,2,2 − 214
∑

m>n>0

(−1)m+n

(m3n)3
=

25 · 32 ζ43 + 26 · 33 · 5 · 13 ζ9 ζ3 + 26 · 33 · 7 · 13 ζ7 ζ5

+ 27 · 35 ζ7 ζ3 ζ2 + 26 · 35 ζ25 ζ2 − 26 · 33 · 5 · 7 ζ5 ζ4 ζ3
− 28 · 32 ζ6 ζ23 −

13177 · 15991

691
ζ12

+ 24 · 33 · 5 · 7 ζ6,2 ζ4 − 27 · 33 ζ8,2 ζ2 − 26 · 32 · 112 ζ10,2

is reducible to MZVs of depth d ≤ 2 and their products. It means that ζ4,4,2,2 is
pushed down to depth d = 2, if we allow alternating sums in the MZV basis.
When constructing the MZV datamine, Johannes Blümlein and Jos
Vermaseren and I were able to prove this by massive use of computer algebra.
It is harder to prove my discovery of pushdown at weight 21 and depth 7, where

81ζ6,2,3,3,5,1,1 + 326
∑

j>k>l>m>n>0

(−1)k+m

(jk2lm2n)3

is empirically reducible to 150 terms containing MZVs of depths d ≤ 5.
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5 Periods from Panzer and Schnetz

I found empirical reductions to MZVs for a pair of 7-loop periods

P7,8 =
22383

20
ζ11 +

4572

5
(ζ3,5,3 − ζ3ζ5,3)− 700ζ23ζ5

+ 1792ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)
P7,9 =

92943

160
ζ11 +

3381

20
(ζ3,5,3 − ζ3ζ5,3)−

1155

4
ζ23ζ5

+ 896ζ3

(
9

320
(12ζ5,3 − 29ζ8) +

45

64
ζ5ζ3

)
that had been expected to involve alternating sums. These results were later
proven, one by Erik Panzer and the other by Oliver Schnetz. They obtained
complicated combinations of alternating sums which then gave my MZV
formulas by use of proven results in the datamine.
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The period from this 7-loop diagram is called P7,11 in the census of Schnetz. All
other periods up to 7 loops reduce to MZVs; only P7,11 requires nested sums with
sixth roots of unity. Panzer evaluated

√
3P7,11 in terms of 4589 such sums, each

of which he evaluated to 5000 digits. Then he found an empirical reduction to a
72-dimensional basis. The rational coefficient of π11 in his result was

C11 = − 964259961464176555529722140887

2733669078108291387021448260000

whose denominator contains 8 primes greater than 11, namely 19, 31, 37, 43, 71,
73, 50909 and 121577.

I built an empirical datamine to enable substantial simplification.
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Let A = d log(x), B = −d log(1− x) and D = −d log(1− exp(2πi/6)x) be letters,
forming words W that define iterated integrals Z(W ). Let

Wm,n =
n−1∑
k=0

ζk3
k!
Am−2kDn−k

Pn = (π/3)n/n!, In = Cln(2π/3) and Ia,b = =Z(Ab−a−1DA2a−1B). Then
√

3P7,11 = −10080=Z(W7,4 +W7,2P2) + 50400ζ3ζ5P3

+

(
35280<Z(W8,2) +

46130

9
ζ3ζ7 + 17640ζ25

)
P1

− 13277952T2,9 − 7799049T3,8 +
6765337

2
I4,7 −

583765

6
I5,6

− 121905

4
ζ3I8 − 93555ζ5I6 − 102060ζ7I4 − 141120ζ9I2

+
42452687872649

6
P11

with the datamine transformations

I2,9 = 91(11T2,9)− 898T3,8 + 11I4,7 − 292P11

I3,8 = 24(11T2,9) + 841T3,8 − 190I4,7 − 255P11

removing denominator primes greater than 3.
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6 Periods and quasi-periods from Laporta

The magnetic moment of the electron, in Bohr magnetons, has electrodynamic
contributions

∑
L≥0 aL(α/π)L given up to L = 4 loops by

a0 = 1 [Dirac, 1928]

a1 = 0.5 [Schwinger, 1947]

a2 = −0.32847896557919378458217281696489239241111929867962 . . .

a3 = 1.18124145658720000627475398221287785336878939093213 . . .

a4 = −1.91224576492644557415264716743983005406087339065872 . . .

In 1957, corrections by Petermann and Sommerfield resulted in

a2 =
197

144
+
ζ2
2

+
3ζ3 − 2π2 log 2

4
.

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

a3 =
28259

5184
+

17101ζ2
135

+
139ζ3 − 596π2 log 2

18

− 39ζ4 + 400U3,1

24
− 215ζ5 − 166ζ3ζ2

24
.
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The 3-loop contribution contains a weight-4 depth-2 polylogarithm

U3,1 =
∑

m>n>0

(−1)m+n

m3n
=
ζ4
2

+
(π2 − log2 2) log2 2

12
− 2

∑
n>0

1

2nn4

encountered in my study of alternating sums [arXiv:hep-th/9611004].

Equally fascinating is the Bessel moment B, at weight 4, in the breath-taking
evaluation by Laporta [arXiv:1704.06996] of 4800 digits of

a4 = P +B + E + U ≈ 2650.565− 1483.685− 1036.765− 132.027 ≈ −1.912

where P comprises polylogs and E comprises integrals, with weights 5, 6 and 7,
whose integrands contain logs and products of elliptic integrals.
U comes from 6 light-by-light integrals, still under investigation.

The weight-4 non-polylogarithm at 4 loops has N = 6 Bessel functions:

B = −
∫ ∞
0

27550138t+ 35725423t3

48600
I0(t)K

5
0(t)dt.
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6.1 Bessel moments and modular forms

Gauss noted on 30 May 1799 that the lemniscate constant∫ 1

0

dx√
1− x4

=
(Γ(1/4))2

4
√

2π
=

π/2

agm(1,
√

2)

is given by the reciprocal of an arithmetic-geometric mean. This is an example
of the Chowla-Selberg formula (1949) at the first singular value. In 1939, Watson
encountered the sixth singular value, in work on integrals from condensed matter

physics. Here,
(∑

n∈Z exp(−
√

6πn2)
)4

gives the product of Γ(k/24) with
k = 1, 5, 7, 11, as observed by Glasser and Zucker in 1977. In 2007, I identified a

Feynman period at the fifteenth singular value, where
(∑

n∈Z exp(−
√

15πn2)
)4

gives the product of Γ(k/15) with k = 1, 2, 4, 8.

With N = a+ b Bessel functions and c ≥ 0, I define moments

M(a, b, c) =

∫ ∞
0

Ia0 (t)Kb
0(t)t

cdt

that converge for b > a > 0. Then the 5-Bessel matrix is[
M(1, 4, 1) M(1, 4, 3)
M(2, 3, 1) M(2, 3, 3)

]
=

[
π2C π2

(
2
15

)2 (
13C − 1

10C

)
√
15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

) ] .
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The determinant 2π3/
√

3355 is free of the 3-loop constant

C =
π

16

(
1− 1√

5

)( ∞∑
n=−∞

exp(−
√

15πn2)

)4

=
1

240
√

5π2

3∏
k=0

Γ

(
2k

15

)
.

The L-series for N = 5 Bessel functions comes from a modular form of weight 3
and level 15 [arXiv:1604.03057]:

ηn = qn/24
∏
k>0

(1− qnk), q = exp(2πiτ),

f3,15(τ) = (η3η5)
3 + (η1η15)

3 =
∑
n>0

A5(n)qn

L5(s) =
∑
n>0

A5(n)

ns
for s > 2

L5(1) =
∑
n>0

A5(n)

n

(
2 +

√
15

2πn

)
exp

(
− 2πn√

15

)
= 5C =

5

π2

∫ ∞
0

I0(t)K
4
0(t)tdt .
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6.2 Periods and quasi-periods for the Laporta problem

Laporta’s work engages the first row of the 6-Bessel determinant

det

[
M(1, 5, 1) M(1, 5, 3)
M(2, 4, 1) M(2, 4, 3)

]
=

5ζ4
32

associated to a modular form f4,6(τ) = (η1η2η3η6)
2 with weight 4 and level 6. At

top left we have M(1, 5, 1), from the on-shell 4-loop sunrise diagram, in two
spacetime dimensions. Below it, M(2, 4, 1) comes from cutting an internal line.
The second column comes from differentiating the first, with respect to the
external momentum, to produce quasi-periods associated with a weakly
holomorphic modular form

f̂4,6(τ) = µf4,6(τ), µ =
1

32

(
w +

3

w

)4

− 9

16

(
w +

3

w

)2

, w =
3η43η

2
2

η41η
2
6

.

With s = 1, 2, I computed compute 10,000 digits of the Eichler lintegrals

Ωs

(2π)s
=

∫ ∞
1/
√
3

f4,6

(
1 + iy

2

)
ys−1dy,

Ω̂s

(2π)s
=

∫ ∞
1/
√
3

f̂4,6

(
1 + iy

2

)
ys−1dy.

17



6.3 Laporta’s intersection number

LLL readily gave me 4 linear relations

2

π2

[
4M0,0(1) 36

5 (M0,0(1) +M0,1(1))
5
3M1,0(1) 3 (M1,0(1) +M1,1(1))

]
=

[
−Ω2 Ω̂2

−Ω1 Ω̂1

]

between Feynman integrals, the periods Ω1,2 and the quasi-periods Ω̂1,2.

The intersection number is the determinant of this matrix, namely 1/12.

David Roberts and I converted this into a quadratic relation between
hypergeometeric series:

Fa = 4F3( 1/2, 2/3, 2/3, 5/6; 7/6, 7/6, 4/3; 1)
Fb = 4F3( −1/2, 1/6, 1/3, 4/3; −1/6, 5/6, 5/3; 1)
Fc = 4F3( 1/6, 1/3, 1/3, 1/2; 2/3, 5/6, 5/6; 1)
Fd = 4F3( −7/6, −1/2, −1/3, 2/3; −5/6, 1/6, 1/3; 1)

namely
7FaFb + 10FcFd = 40.
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7 Quadratic relations for all loops

Conjecture: [Broadhurst and Roberts] With the Feynman, de Rham and Betti
matrices below, we conjecture that

FNDNF
tr
N = BN .

The elements of the Feynman matrices FN are the Bessel moments

F2k+1(u, a) =
(−1)a−1

πu
M(k + 1− u, k + u, 2a− 1)

F2k+2(u, a) =
(−1)a−1

πu+1/2
M(k + 1− u, k + 1 + u, 2a− 1)

with u and a, as well as later indices v and b, running from 1 to k. F tr
N is the

transpose of FN . The Betti matrices BN have rational elements given by

B2k+1(u, v) = (−1)u+k2−2k−2(k + u)!(k + v)!Z(u+ v)

B2k+2(u, v) = (−1)u+k2−2k−3(k + u+ 1)!(k + v + 1)!Z(u+ v + 1)

Z(m) =
1 + (−1)m

(2π)m
ζ(m).
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For the de Rham matrices DN , let vk and wk be the rationals generated by

J2
0 (t)

C(t)
=
∑
k≥0

vk
k!

(
t

2

)2k

= 1− 17t2

54
+

3781t4

186624
+ . . .

2J0(t)J1(t)

tC(t)
=
∑
k≥0

wk
k!

(
t

2

)2k

= 1− 41t2

216
+

325t4

186624
+ . . .

where J0(t) = I0(it), J1(t) = −J ′0(t) and

C(t) =
32(1− J2

0 (t)− tJ0(t)J1(t))
3t4

= 1− 5t2

27
+

35t4

2304
− 7t6

9600
+ . . .

Construct rational bivariate polynomials Hs = Hs(y, z) by the recursion

Hs = zHs−1 − (s− 1)yHs−2 −
s−1∑
k=1

(
s− 1

k

)
(vkHs−k − wkzHs−k−1)

for s > 0, with H0 = 1 and H−1 = 0. Use these to define

ds(N, c) =
Hs(3c/2, N + 2− 2c)

4ss!
.
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Finally, construct de Rham matrices with the rational elements

DN(a, b) =
a∑

c=−b

da−c(N,−c)db+c(N, c)cN+1.

7.1 Remarks

1. The discovery of this formula for the coefficients of these quadratic relations
involved intensive use of LLL, at high numerical precision. At 20 loops, there
are 100 Feynman integrals to consider. We claim to have found all of the
quadratic relations between their 5050 products.

2. Javier Fresán, Claude Sabbah and Jeng-Daw Yu have verified that our
formulas hold up to 20 loops, after which they ran out of computing power.

3. They encountered subtleties when N is divisible 4. These are entirely avoided
by our uniform formula.

4. Last month, at Elliptics20, Roman Lee announced that he is able to
generate our de Rham matrices iteratively and check our claim up to some
modest number of loops that is limited by his computing power.
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8 Quadratic relations for black holes

Last December, Philip Candelas, Xenia de la Ossa, Mohamed Elmi and Duco
van Straten announced a remarkable discovery of A One Parameter Family of
Calabi-Yau Manifolds with Attractor Points of Rank Two [arXiv:1912.06146].

They compactified a 10-dimensional supergravity theory on a Calabi-Yau
three-fold with complex structure, to obtain 4-dimensional black holes, with
event horizons whose areas are determined by their electric and magnetic charges
and by ratios of periods of modular forms of weight 4 and levels 14 or 34.

Hearing of this on a visit to Oxford, in November, I observed that their Calabi-Yau
periods come from solutions to a homogeneous differential equation associated
with 4 loop sunrise integrals, namely

Mm,n(z) =

∫ ∞
0

I0(xz)[I0(x)]m[K0(x)]5−mx2n+1dx

Nm,n(z) = z

∫ ∞
0

I1(xz)[I0(x)]m[K0(x)]5−mx2n+2dx

with m ∈ {0, 1, 2}, integers n ≥ 0 and real z2 < (5− 2m)2. The uncut diagram
gives M0,0(z) and satisfies an inhomogeneous differential equation.
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The external mass is z. At z = 1 we obtain Laporta’s on-shell periods, for the
magnetic moment of the electron at 4 loops, coming from the modular form
f4,6(τ) = (η1η2η3η6)

2 with level 6. With mass z =
√

17− 4, I obtained level 34
periods. At the space-like point z =

√
−7, I obtained level 14 periods.

Candelas et al. were unable to identify all of the 16 Calabi-Yau periods. At each of
the levels 14 and 34, I found that are given by 8 Feynman integrals, satisfying two
quadratic relations. These 8 integrals determine a pair of periods and a pair of
quasi-periods at each of the weights 2 and 4.

Here I indicate the situation at level 14, where I identified

f4,14(τ) =
(η2η7)

6

(η1η14)2
− 4(η1η2η7η14)

2 +
(η1η14)

6

(η2η7)2

as the relevant modular form of weight 4. Its periods are critical values of the
L-function L(f4,14, s) = ((2π)s/Γ(s))

∫∞
0 f4,14(iy)ys−1dy, with

L(f4,14, 3) = M1,0(
√
−7) =

∫ ∞
0

J0(
√

7x)I0(x)K4
0(x)xdx =

π2

7
L(f4,14, 1)

1
2L(f4,14, 2) = M2,0(

√
−7) =

∫ ∞
0

J0(
√

7x)I20(x)K3
0(x)xdx.
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There is also a modular form of weight 2 to consider, f2,14(τ) = η1η2η7η14. This
provides a modular parametrization of a quartic elliptic curve, namely

d2 = (1 + h)(1 + 8h)(1 + 5h+ 8h2),

h =

(
η2η14
η1η7

)3

= q + 3q2 + 6q3 + 13q4 +O(q5),

d =
q

f2,14

dh

dq
= 1 + 7q + 27q2 + 92q3 + 259q4 +O(q5).

At weight 2, we obtain complete elliptic integrals.

From my work with Kevin Acres on Rademacher sums, I was able to
determine a weakly holomorphic form that gives the weight-4 quasi-periods.
The space of cuspforms is 4-dimensional and we had to solve a 4× 10 matrix
problem, with each of the 4 associated weakly holomorphic forms obtained by
multiplying f 22,14 by a polynomial that is linear in d and quartic in h.

The published chapter will give details of a more demanding problem solved by
LLL, at weight 6 and level 24, where the space of cuspforms is 16-dimensional.
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Summary

1. PSLQ and LLL have enlivened quests for analytical results.

2. PSLQ led to the Broadhurst-Kreimer conjecture.

3. PSLQ has been parallelized.

4. PSLQ and LLL have provided strong tests on conjectures.

5. PSLQ and LLL have condensed huge expressions.

6. Parallel PSLQ was of the essence in Laporta’s work in electrodynamics.

7. LLL led to a conjecture on quadratic relations for all loops.

8. LLL led to exact results for the black hole problem.
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