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Section 1

Background from Mathematics
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Algebraic curves

Ground field C

Algebraic curve in C
2 defined by a polynomial P(x ,y):

P (x ,y) = 0

Projective space CP
2 with homogeneous coordinates [x : y : z]:

Algebraic curve in CP
2 defined by a homogeneous polynomial P(x ,y ,z):

P (x ,y ,z) = 0

We usually work in the chart z = 1.
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Elliptic curves

Definition (Elliptic curve over C)

An algebraic curve in CP
2 of genus one with one marked point.

Example (Weierstrass normal form)

In the chart z = 1:

y2 = 4x3 −g2x −g3

Example (Quartic form)

In the chart z = 1:

y2 = (x − x1) (x − x2)(x − x3)(x − x4)
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Riemann surfaces

One complex dimension corresponds to two real dimensions.

x

y

Weierstrass normal form

y2 = 4x3 −g2x −g3

Real Riemann surface of genus

one with one marked point
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Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable

z.

A period ω of the function f is a constant such that for all z:

f (z +ω) = f (z)

The set of all periods of f forms a lattice, which is either

trivial (i.e. the lattice consists of ω = 0 only),

a simple lattice, Λ = {nω | n ∈ Z},

a double lattice, Λ = {n1ω1 +n2ω2 | n1,n2 ∈ Z}.

Double periodic functions are called elliptic functions.
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Examples of periodic functions

Singly periodic function: Exponential function

exp(z) .

exp(z) is periodic with peridod ω = 2πi .

Doubly periodic function: Weierstrass’s ℘-function

℘(z) =
1

z2
+ ∑

ω∈Λ\{0}

(
1

(z +ω)2
− 1

ω2

)
, Λ = {n1ω1 + n2ω2|n1,n2 ∈ Z} ,

Im(ω2/ω1) 6= 0.

℘(z) is periodic with periods ω1 and ω2.
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Inverse functions

The corresponding inverse functions are in general multivalued functions.

For the exponential function x = exp(z) the inverse function is the

logarithm

z = ln(x) .

For Weierstrass’s elliptic function x =℘(z) the inverse function is an

elliptic integral

z =

∞∫

x

dt√
4t3 − g2t − g3

, g2 = 60 ∑
ω∈Λ\{0}

1

ω4
, g3 = 140 ∑

ω∈Λ\{0}

1

ω6
.
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Elliptic integrals

Complete elliptic integrals

First kind:

K(x) =

1∫

0

dt√
(1− t2)(1− x2t2)

Second kind:

E(x) =

1∫

0

dt

√
1− x2t2

√
1− t2

Third kind:

Π(v ,x) =

1∫

0

dt
(
1− vt2

)√(
1− t2

)(
1− x2 t2

)

Incomplete elliptic integrals

First kind:

F (z,x) =

z∫

0

dt√
(1− t2)(1− x2t2)

Second kind:

E (z,x) =

z∫

0

dt

√
1− x2t2

√
1− t2

Third kind:

Π(v ,z,x) =

z∫

0

dt
(
1− vt2

)√(
1− t2

)(
1− x2 t2

)
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Abelian differentials

Abelian differential of the first kind:

holomorphic

Abelian differential of the second kind:

meromorphic with all residues vanishing

Abelian differential of the third kind:

meromorphic with non-zero residues
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Periods of an elliptic curve

Integrate the holomorphic differential along the two independent cycles.

γ1
γ2
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Periods of an elliptic curve

Example

The Legendre form:

y2 = x (x −1) (x −λ)

The periods are

ω1 = 2

λ∫

0

dx

y
= 4K

(√
λ
)

ω2 = 2

λ∫

1

dx

y
= 4iK

(√
1−λ

)
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Picard-Fuchs operator

The elliptic curve y2 = x(x −1)(x −λ) depends on a parameter λ,

and so do the periods ω1(λ) and ω2(λ).

How do the periods change, if we change λ?

The variation is governed by a second-order differential equation:

With t =
√

λ we have

[
t
(
1− t2

) d2

dt2
+
(
1−3t2

) d

dt
− t

]

︸ ︷︷ ︸
Picard-Fuchs operator

ωj = 0
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Representing an elliptic curve as C/Λ

Re z

Im z

ω1

ω2

Points inside fundamental parallelogram ⇔ Points on elliptic curve
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Back and forth

Weierstrass normal form → C/Λ:

Given a point (x ,y) with y2 −4x3 +g2x +g3 = 0 the corresponding point

z ∈C/Λ is given by

z =

∞∫

x

dt√
4t3 −g2t −g3

C/Λ→ Weierstrass normal form:

Given a point z ∈ C/Λ the corresponding point (x ,y) on

y2 −4x3 +g2x +g3 = 0 is given by

(x ,y) =
(
℘(z) ,℘′ (z)

)
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Notation

Convention: Normalise (ω2,ω1)→ (τ,1), where

τ =
ω2

ω1

and require Im(τ)> 0.

Definition (The complex upper half-plane)

H = {τ ∈C|Im(τ)> 0}
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Modular transformations

The periods ω1 and ω2 generate a lattice. Any other basis as good as

(ω2,ω1).

1

τ τ
′

Change of basis:

(
ω′

2

ω′
1

)
=

(
a b

c d

)(
ω2

ω1

)
,

Transformation should be invertible:

(
a b

c d

)
∈ SL2 (Z) ,

In terms of τ and τ′: τ′ =
aτ+b

cτ+d
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Modular forms

A meromorphic function f :H→ C is a modular form of modular weight k for

SL2(Z) if

1 f transforms under modular transformations as

f

(
aτ+b

cτ+d

)
= (cτ+d)k · f (τ) for γ =

(
a b

c d

)
∈ SL2(Z)

2 f is holomorphic on H,

3 f is holomorphic at i∞.

Define the |k γ operator by

(f |k γ)(τ) = (cτ+d)−k · f (γ(τ))
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Congruence subgroups

Apart from SL2(Z) we may also look at congruence subgroups, for example

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, c ≡ 0 mod N

}

Γ(N) =

{(
a b

c d

)
∈ SL2(Z) : a,d ≡ 1 mod N, b,c ≡ 0 mod N

}

Modular forms for congruence subgroups: Require “nice” transformation

properties only for subgroup Γ (plus holomorphicity on H and at the cusps).
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Modular forms

For a congruence subgroup Γ of SL2(Z) denote by Mk(Γ) the space of

modular forms of weight k .

We have the inclusions

Mk(SL2(Z))⊆ Mk(Γ0(N))⊆ Mk(Γ1(N)) ⊆ Mk(Γ(N))

For f ∈ Mk(Γ(N)):

f |k γ = f , γ ∈ Γ(N)

f |k γ ∈ Mk(Γ(N)), γ ∈ SL2(Z)\Γ(N)
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Notation

For τ ∈H and z ∈ C set

q̄ = exp(2πiτ) , w̄ = exp(2πiz)

Maps the complex upper half-plane τ ∈H to the unit disk |q̄|< 1.

Trivialises periodicity with period 1:

q̄ (τ+1) = q̄ (τ) , w̄ (z +1) = w̄ (z)

Shifts with τ correspond to multiplication with q̄:

q̄ (τ+ τ) = q̄ (τ) · q̄ (τ) , w̄ (z + τ) = w̄ (z) · q̄ (τ)
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Iterated integrals of modular forms

Let f1, . . . , fn be modular forms.

I (f1, f2, ..., fn;q) = (2πi)n

τ∫

τ0

dτ1f1 (τ1)

τ1∫

τ0

dτ2f2 (τ2) ...

τn−1∫

τ0

dτnfn (τn)

As basepoint we usually take τ0 = i∞.

An integral over a modular form is in general not a modular form.

Analogy: An integral over a rational function is in general not a rational

function.
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Simple poles at τ = i∞

A modular form fk(τ) is by definition holomorphic at the cusp and has a

q̄-expansion

fk(τ) = a0 +a1q̄+a2q̄2 + ..., q̄ = exp(2πiτ)

The transformation q̄ = exp(2πiτ) transforms the point τ = i∞ to q̄ = 0 and we

have

2πi fk(τ)dτ =
dq̄

q̄

(
a0 +a1q̄+a2q̄2 + ...

)
.

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at

q̄ = 0.
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Section 2

Moduli spaces
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Moduli spaces

Mg,n: Space of isomorphism classes of smooth (complex, algebraic) curves

of genus g with n marked points.

complex curve
z1

z2

z3⇔

z1

z2

z3

z1

z2

z3⇔z2

z1

z3

real surface
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Coordinates

Genus 0: dimM0,n = n−3.

Sphere has a unique shape

Use Möbius transformation to fix zn−2 = 1, zn−1 = ∞, zn = 0

Coordinates are (z1, ...,zn−3)

Genus 1: dimM1,n = n.

One coordinate describes the shape of the torus

Use translation to fix zn = 0

Coordinates are (τ,z1, ...,zn−1)
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Iterated integrals

For ω1, ..., ωk differential 1-forms on a manifold M and γ : [0,1]→ M a path,

write for the pull-back of ωj to the interval [0,1]

fj (λ)dλ = γ∗ωj .

The iterated integral is defined by

Iγ (ω1, ...,ωk ;λ) =

λ∫

0

dλ1f1 (λ1)

λ1∫

0

dλ2f2 (λ2) ...

λk−1∫

0

dλk fk (λk) .

Chen ’77
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Iterated integrals on M0,n

We are interested in differential one-forms, which have only simple poles:

ωmpl (zj) =
dy

y − zj

.

Multiple polylogarithms:

G(z1, ...,zk ;y) =

y∫

0

dy1

y1 − z1

y1∫

0

dy2

y2 − z2

...

yk−1∫

0

dyk

yk − zk

, zk 6= 0
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Iterated integrals on M1,n

Coordinates are (τ,z1, ...,zn−1)

Decompose an arbitrary path along dτ and dzj

Two classes of iterated integrals:

1 Integration along z
2 Integration along τ

What are the differential one-forms we want to integrate?
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The Kronecker function

The first Jacobi theta function θ1(z,q):

θ1 (z,q) = −i
∞

∑
n=−∞

(−1)n
q(n+ 1

2)
2

ei(2n+1)z , q = eiπτ

The Kronecker function F(z,α,τ):

F (z,α,τ) = πθ′1 (0,q)
θ1 (π(z +α) ,q)

θ1 (πz,q)θ1 (πα,q)
=

1

α

∞

∑
k=0

g(k) (z,τ)αk

We are mainly interested in the coefficients g(k)(z,τ) of the Kronecker

function.
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The coefficients g(k)(z,τ) of the Kronecker function

Properties of g(k)(z,τ):

1 only simple poles as a function of z

2 quasi-periodic as a function of z: Periodic by 1, quasi-periodic by τ.

g(k) (z +1,τ) = g(k) (z,τ) ,

g(k) (z + τ,τ) =
k

∑
j=0

(−2πi)j

j!
g(k−j) (z,τ)

3 almost modular:

g(k)

(
z

cτ+d
,

aτ+b

cτ+d

)
= (cτ+d)k

k

∑
j=0

(2πi)j

j!

(
cz

cτ+d

)j

g(k−j) (z,τ)
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Iterated integrals on M1,n: Integration along z

Differential one-forms:

ω
Kronecker,z
k ,K (zj ,τ) = (2πi)2−k

g(k−1) (z − zj ,K τ)dz

Elliptic multiple polylogarithms:

Γ̃
(

n1 ... nr
z1 ... zr

;z;τ
)

= (2πi)n1+···+nr−r
I

(
ω

Kronecker,z
n1+1,1 (z1,τ) , . . . ,ω

Kronecker,z
nr+1,1 (zr ,τ) ;z

)

Broedel, Duhr, Dulat, Tancredi, ’17

τ = const

meromorphic version, only simple poles

not double periodic!
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Iterated integrals on M1,n: Integration along τ

Differential one-forms:

ω
Kronecker,τ
k ,K (zj) = (2πi)2−k

K (k −1)g(k) (zj ,K τ)
dτ

2πi

=
K (k −1)

(2πi)k
g(k) (zj ,K τ)

dq̄

q̄

Integrate in q̄

No poles in 0 < |q̄|< 1.

Possibly a simple pole at q̄ = 0 (“trailing zero”)
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Section 3

Physics
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Standard tools

Integration-by-parts identities

Tkachov ’81, Chetyrkin ’81

the method of differential equations

Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99

Laporta algorithm and computer implementations
Laporta ’01,

REDUZE von Manteuffel, Studerus ’12,

FIRE Smirnov ’15,

KIRA Maierhöfer, Usovitsch, Uwer ’ 17
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Notation

NF = NFibre: Number of master integrals,

master integrals denoted by I = (I1, ..., INF
).

NB = NBase: Number of kinematic variables,

kinematic variables denoted by x = (x1, ...,xNB
).

NL = NLetters: Number of letters,

differential one-forms denoted by ω = (ω1, ...,ωNL
).
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Differential equations

System of differential equations

dI +AI = 0,

where A(ε,x) is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi .

The matrix-valued one-form A satisfies the integrability condition

dA+A∧A = 0 (flat Gauß-Manin connection).

Computation of Feynman integrals reduced to solving differential

equations!
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Simple differential equations

The system of differential equations is particular simple, if A is of the form

A = ε
NL

∑
j=1

Cj ωj ,

where

Cj is a NF ×NF -matrix, whose entries are (rational or integer) numbers,

the only dependence on ε is given by the explicit prefactor,

the differential one-forms ωj have only simple poles.

Henn ’13
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Transformations

Change the basis of the master integrals

I′ = UI,

where U(ε,x) is a NF ×NF -matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

Perform a coordinate transformation on the base manifold:

x ′
i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai

∂xi

∂x ′
j

dx ′
j .
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The equal-mass sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of

variables and/or a rational/algebraic transformation of the basis of master

integrals.
However by factoring off the (non-algebraic) expression ω1/π from the
master integrals in the sunrise sector one obtains an ε-form:

I1 = 4ε2S110 (2−2ε,x) I2 =−ε2 π

ω1

S111 (2−2ε,x) I3 =
1

ε

1

2πi

d

dτ
I2 +

1

24

(
3x2 −10x −9

) ω2
1

π2
I2

If in addition one makes a (non-algebraic) change of variables from x to τ,

one obtains

d

dτ
I = ε A(τ) I,

where A(τ) is an ε-independent 3×3-matrix whose entries are modular

forms.
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The unequal-mass sunrise

After a redefinition of the basis of master integrals and a change of

coordiantes from (x ,y1,y2) = (p2/m2
3,m

2
1/m2

3,m
2
2/m2

3) to (τ,z1,z2) one finds

A = ε
NL

∑
j=1

Cj ωj, with ωj only simple poles,

where ωj is either

2πi fk (τ)dτ,

where fk(τ) is a modular form, or of the form

ωk (zi ,K τ) = (2πi)2−k

[
g(k−1) (zi ,K τ)dzi +K (k −1)g(k) (zi ,K τ)

dτ

2πi

]
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Comments

It is advantageous to integrate in τ:

Analytic expressions shorter

Easier to evaluate numerically

Boundary condition at τ = i∞:

Elliptic curve degenerates, geometric genus equals zero

Feynman integrals expressible in terms of multiple polylogarithms
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Conclusions

Feynman integrals important in many areas of physics.

Feynman integrals evaluating to multiple polylogarithms related to iterated

integrals on M0,n.

There is a class of Feynman integrals related to elliptic curves from two

loops onwards, evaluating to iterated integrals on M1,n.

Computation of Feynman integrals is trivial, as soon as the system of

differential equations is transformed to

A = ε
NL

∑
k=1

Ck ωk , with ωk only simple poles.

This form can be reached for

- many Feynman integrals evaluating to multiple polylogarithms

- a few non-trivial elliptic examples
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