Elliptic Integrals

Iterated integrals related to Feynman integrals associated to elliptic curves

Stefan Weinzierl

Institut für Physik, Universität Mainz

October 8, 2020

Section 1

Background from Mathematics

Algebraic curves

- Ground field \mathbb{C}
- Algebraic curve in \mathbb{C}^{2} defined by a polynomial $P(x, y)$:

$$
P(x, y)=0
$$

- Projective space $\mathbb{C P}^{2}$ with homogeneous coordinates $[x: y: z]$:

Algebraic curve in $\mathbb{C P}^{2}$ defined by a homogeneous polynomial $P(x, y, z)$:

$$
P(x, y, z)=0
$$

We usually work in the chart $z=1$.

Elliptic curves

Definition (Elliptic curve over \mathbb{C})

An algebraic curve in $\mathbb{C P}^{2}$ of genus one with one marked point.

Example (Weierstrass normal form)

In the chart $z=1$:

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

Example (Quartic form)

In the chart $z=1$:

$$
y^{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)
$$

Riemann surfaces

One complex dimension corresponds to two real dimensions.

Weierstrass normal form $y^{2}=4 x^{3}-g_{2} x-g_{3}$

Real Riemann surface of genus one with one marked point

Periodic functions

Let us consider a non-constant meromorphic function f of a complex variable z.
A period ω of the function f is a constant such that for all z :

$$
f(z+\omega)=f(z)
$$

The set of all periods of f forms a lattice, which is either

- trivial (i.e. the lattice consists of $\omega=0$ only),
- a simple lattice, $\Lambda=\{n \omega \mid n \in \mathbb{Z}\}$,
- a double lattice, $\Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$.

Double periodic functions are called elliptic functions.

Examples of periodic functions

- Singly periodic function: Exponential function

$$
\exp (z)
$$

$\exp (z)$ is periodic with peridod $\omega=2 \pi i$.

- Doubly periodic function: Weierstrass's \wp-function

$$
\begin{aligned}
& \wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}\right), \quad \Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\} \\
& \operatorname{Im}\left(\omega_{2} / \omega_{1}\right) \neq 0
\end{aligned}
$$

$\wp(z)$ is periodic with periods ω_{1} and ω_{2}.

Inverse functions

The corresponding inverse functions are in general multivalued functions.

- For the exponential function $x=\exp (z)$ the inverse function is the logarithm

$$
z=\ln (x)
$$

- For Weierstrass's elliptic function $x=\wp(z)$ the inverse function is an elliptic integral

$$
z=\int_{x}^{\infty} \frac{d t}{\sqrt{4 t^{3}-g_{2} t-g_{3}}}, \quad g_{2}=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}}, \quad g_{3}=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
$$

Elliptic integrals

Complete elliptic integrals

- First kind:

$$
K(x)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-x^{2} t^{2}\right)}}
$$

- Second kind:

$$
E(x)=\int_{0}^{1} d t \frac{\sqrt{1-x^{2} t^{2}}}{\sqrt{1-t^{2}}}
$$

- Third kind:

$$
\Pi(v, x)=\int_{0}^{1} \frac{d t}{\left(1-v t^{2}\right) \sqrt{\left(1-t^{2}\right)\left(1-x^{2} t^{2}\right)}}
$$

Incomplete elliptic integrals

- First kind:

$$
F(z, x)=\int_{0}^{z} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-x^{2} t^{2}\right)}}
$$

- Second kind:

$$
E(z, x)=\int_{0}^{z} d t \frac{\sqrt{1-x^{2} t^{2}}}{\sqrt{1-t^{2}}}
$$

- Third kind:

$$
\Pi(v, z, x)=\int_{0}^{z} \frac{d t}{\left(1-v t^{2}\right) \sqrt{\left(1-t^{2}\right)\left(1-x^{2} t^{2}\right)}}
$$

Abelian differentials

- Abelian differential of the first kind: holomorphic
- Abelian differential of the second kind: meromorphic with all residues vanishing
- Abelian differential of the third kind:
meromorphic with non-zero residues

Periods of an elliptic curve

Integrate the holomorphic differential along the two independent cycles.

Periods of an elliptic curve

Example

The Legendre form:

$$
y^{2}=x(x-1)(x-\lambda)
$$

The periods are

$$
\omega_{1}=2 \int_{0}^{\lambda} \frac{d x}{y}=4 K(\sqrt{\lambda}) \quad \omega_{2}=2 \int_{1}^{\lambda} \frac{d x}{y}=4 i K(\sqrt{1-\lambda})
$$

Picard-Fuchs operator

The elliptic curve $y^{2}=x(x-1)(x-\lambda)$ depends on a parameter λ, and so do the periods $\omega_{1}(\lambda)$ and $\omega_{2}(\lambda)$.

How do the periods change, if we change λ ?
The variation is governed by a second-order differential equation: With $t=\sqrt{\lambda}$ we have

$$
\underbrace{\left[t\left(1-t^{2}\right) \frac{d^{2}}{d t^{2}}+\left(1-3 t^{2}\right) \frac{d}{d t}-t\right]}_{\text {Picard-Fuchs operator }} \omega_{j}=0
$$

Representing an elliptic curve as \mathbb{C} / Λ

Points inside fundamental parallelogram \Leftrightarrow Points on elliptic curve

Back and forth

- Weierstrass normal form $\rightarrow \mathbb{C} / \wedge$:

Given a point (x, y) with $y^{2}-4 x^{3}+g_{2} x+g_{3}=0$ the corresponding point $z \in \mathbb{C} / \Lambda$ is given by

$$
z=\int_{x}^{\infty} \frac{d t}{\sqrt{4 t^{3}-g_{2} t-g_{3}}}
$$

- $\mathbb{C} / \wedge \rightarrow$ Weierstrass normal form:

Given a point $z \in \mathbb{C} / \Lambda$ the corresponding point (x, y) on $y^{2}-4 x^{3}+g_{2} x+g_{3}=0$ is given by

$$
(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)
$$

Notation

Convention: Normalise $\left(\omega_{2}, \omega_{1}\right) \rightarrow(\tau, 1)$, where

$$
\tau=\frac{\omega_{2}}{\omega_{1}}
$$

and require $\operatorname{Im}(\tau)>0$.
Definition (The complex upper half-plane)

$$
\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}
$$

Modular transformations

The periods ω_{1} and ω_{2} generate a lattice. Any other basis as good as $\left(\omega_{2}, \omega_{1}\right)$.

Change of basis: $\quad\binom{\omega_{2}^{\prime}}{\omega_{1}^{\prime}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{\omega_{2}}{\omega_{1}}$,
Transformation should be invertible: $\quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$,

$$
\text { In terms of } \tau \text { and } \tau^{\prime}: \quad \tau^{\prime}=\frac{a \tau+b}{c \tau+d}
$$

Modular forms

A meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a modular form of modular weight k for $\mathrm{SL}_{2}(\mathbb{Z})$ if
(1) f transforms under modular transformations as

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} \cdot f(\tau) \quad \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

(2) f is holomorphic on \mathbb{H},
(3) f is holomorphic at $i \infty$.

Define the $\left.\right|_{k} \gamma$ operator by

$$
\left(\left.f\right|_{k} \gamma\right)(\tau)=(c \tau+d)^{-k} \cdot f(\gamma(\tau))
$$

Congruence subgroups

Apart from $\mathrm{SL}_{2}(\mathbb{Z})$ we may also look at congruence subgroups, for example

$$
\begin{aligned}
\Gamma_{0}(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} \\
\Gamma_{1}(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a, d \equiv 1 \bmod N, c \equiv 0 \bmod N\right\} \\
\Gamma(N) & =\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a, d \equiv 1 \bmod N, b, c \equiv 0 \bmod N\right\}
\end{aligned}
$$

Modular forms for congruence subgroups: Require "nice" transformation properties only for subgroup Γ (plus holomorphicity on \mathbb{H} and at the cusps).

Modular forms

For a congruence subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ denote by $\mathcal{M}_{k}(\Gamma)$ the space of modular forms of weight k.
We have the inclusions

$$
\mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \subseteq \mathscr{M}_{k}\left(\Gamma_{0}(N)\right) \subseteq \mathscr{M}_{k}\left(\Gamma_{1}(N)\right) \subseteq \mathscr{M}_{k}(\Gamma(N))
$$

For $f \in \mathcal{M}_{k}(\Gamma(N))$:

$$
\begin{array}{ll}
\left.f\right|_{k} \gamma=f, & \gamma \in \Gamma(N) \\
\left.f\right|_{k} \gamma \in \mathcal{M}_{k}(\Gamma(N)), & \gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \backslash \Gamma(N)
\end{array}
$$

Notation

For $\tau \in \mathbb{H}$ and $z \in \mathbb{C}$ set

$$
\bar{q}=\exp (2 \pi i \tau), \quad \bar{w}=\exp (2 \pi i z)
$$

Maps the complex upper half-plane $\tau \in \mathbb{H}$ to the unit disk $|\bar{q}|<1$.
Trivialises periodicity with period 1:

$$
\bar{q}(\tau+1)=\bar{q}(\tau), \quad \bar{w}(z+1)=\bar{w}(z)
$$

Shifts with τ correspond to multiplication with \bar{q} :

$$
\bar{q}(\tau+\tau)=\bar{q}(\tau) \cdot \bar{q}(\tau), \quad \bar{w}(z+\tau)=\bar{w}(z) \cdot \bar{q}(\tau)
$$

Iterated integrals of modular forms

Let f_{1}, \ldots, f_{n} be modular forms.

$$
I\left(f_{1}, f_{2}, \ldots, f_{n} ; q\right)=(2 \pi i)^{n} \int_{\tau_{0}}^{\tau} d \tau_{1} f_{1}\left(\tau_{1}\right) \int_{\tau_{0}}^{\tau_{1}} d \tau_{2} f_{2}\left(\tau_{2}\right) \ldots \int_{\tau_{0}}^{\tau_{n-1}} d \tau_{n} f_{n}\left(\tau_{n}\right)
$$

As basepoint we usually take $\tau_{0}=i \infty$.
An integral over a modular form is in general not a modular form.
Analogy: An integral over a rational function is in general not a rational function.

Simple poles at $\tau=i \infty$

A modular form $f_{k}(\tau)$ is by definition holomorphic at the cusp and has a \bar{q}-expansion

$$
f_{k}(\tau)=a_{0}+a_{1} \bar{q}+a_{2} \bar{q}^{2}+\ldots, \quad \bar{q}=\exp (2 \pi i \tau)
$$

The transformation $\bar{q}=\exp (2 \pi i \tau)$ transforms the point $\tau=i \infty$ to $\bar{q}=0$ and we have

$$
2 \pi i f_{k}(\tau) d \tau=\frac{d \bar{q}}{\bar{q}}\left(a_{0}+a_{1} \bar{q}+a_{2} \bar{q}^{2}+\ldots\right) .
$$

Thus a modular form non-vanishing at the cusp $\tau=i \infty$ has a simple pole at $\bar{q}=0$.

Section 2

Moduli spaces

Moduli spaces

$\mathcal{M}_{g, n}$: Space of isomorphism classes of smooth (complex, algebraic) curves of genus g with n marked points.
complex curve

Coordinates

Genus 0: $\quad \operatorname{dim} \mathcal{M}_{0, n}=n-3$.
Sphere has a unique shape
Use Möbius transformation to fix $z_{n-2}=1, z_{n-1}=\infty, z_{n}=0$
Coordinates are $\left(z_{1}, \ldots, z_{n-3}\right)$
Genus 1: $\quad \operatorname{dim} \mathcal{M}_{1, n}=n$.
One coordinate describes the shape of the torus
Use translation to fix $z_{n}=0$
Coordinates are $\left(\tau, \mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{n}-1}\right)$

Iterated integrals

For $\omega_{1}, \ldots, \omega_{k}$ differential 1-forms on a manifold M and $\gamma:[0,1] \rightarrow M$ a path, write for the pull-back of ω_{j} to the interval $[0,1]$

$$
f_{j}(\lambda) d \lambda=\gamma^{*} \omega_{j} .
$$

The iterated integral is defined by

$$
I_{\gamma}\left(\omega_{1}, \ldots, \omega_{k} ; \lambda\right)=\int_{0}^{\lambda} d \lambda_{1} f_{1}\left(\lambda_{1}\right) \int_{0}^{\lambda_{1}} d \lambda_{2} f_{2}\left(\lambda_{2}\right) \ldots \int_{0}^{\lambda_{k-1}} d \lambda_{k} f_{k}\left(\lambda_{k}\right)
$$

Chen ' 77

Iterated integrals on $\mathcal{M}_{0, n}$

We are interested in differential one-forms, which have only simple poles:

$$
\omega^{\mathrm{mpl}}\left(z_{j}\right)=\frac{d y}{y-z_{j}}
$$

Multiple polylogarithms:

$$
G\left(z_{1}, \ldots, z_{k} ; y\right)=\int_{0}^{y} \frac{d y_{1}}{y_{1}-z_{1}} \int_{0}^{y_{1}} \frac{d y_{2}}{y_{2}-z_{2}} \ldots \int_{0}^{y_{k-1}} \frac{d y_{k}}{y_{k}-z_{k}}, \quad z_{k} \neq 0
$$

Iterated integrals on $\mathcal{M}_{1, n}$

- Coordinates are $\left(\tau, z_{1}, \ldots, z_{n-1}\right)$
- Decompose an arbitrary path along $d \tau$ and $d z_{j}$
- Two classes of iterated integrals:
(1) Integration along z
(2) Integration along τ
- What are the differential one-forms we want to integrate?

The Kronecker function

The first Jacobi theta function $\theta_{1}(z, q)$:

$$
\theta_{1}(z, q)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{i(2 n+1) z}, \quad q=e^{i \pi \tau}
$$

The Kronecker function $F(z, \alpha, \tau)$:

$$
F(z, \alpha, \tau)=\pi \theta_{1}^{\prime}(0, q) \frac{\theta_{1}(\pi(z+\alpha), q)}{\theta_{1}(\pi z, q) \theta_{1}(\pi \alpha, q)}=\frac{1}{\alpha} \sum_{k=0}^{\infty} g^{(k)}(z, \tau) \alpha^{k}
$$

We are mainly interested in the coefficients $g^{(k)}(z, \tau)$ of the Kronecker function.

The coefficients $g^{(k)}(z, \tau)$ of the Kronecker function

Properties of $g^{(k)}(z, \tau)$:
(1) only simple poles as a function of z
(2) quasi-periodic as a function of z : Periodic by 1 , quasi-periodic by τ.

$$
\begin{aligned}
g^{(k)}(z+1, \tau) & =g^{(k)}(z, \tau), \\
g^{(k)}(z+\tau, \tau) & =\sum_{j=0}^{k} \frac{(-2 \pi i)^{j}}{j!} g^{(k-j)}(z, \tau)
\end{aligned}
$$

(3) almost modular:

$$
g^{(k)}\left(\frac{z}{c \tau+d}, \frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} \sum_{j=0}^{k} \frac{(2 \pi i)^{j}}{j!}\left(\frac{c z}{c \tau+d}\right)^{j} g^{(k-j)}(z, \tau)
$$

Iterated integrals on $\mathcal{M}_{1, n}$: Integration along z

Differential one-forms:

$$
\omega_{k, K}^{\text {Kronecker }, z}\left(z_{j}, \tau\right)=(2 \pi i)^{2-k} g^{(k-1)}\left(z-z_{j}, K \tau\right) d z
$$

Elliptic multiple polylogarithms:

$\widetilde{\Gamma}\left(\begin{array}{ll}n_{1} \ldots n_{r} \\ z_{1} \ldots & \ldots \\ z_{r}\end{array} ; z ; \tau\right)=(2 \pi i)^{n_{1}+\cdots+n_{r}-r} I\left(\omega_{n_{1}+1,1}^{\text {Kronecker }, z}\left(z_{1}, \tau\right), \ldots, \omega_{n_{r}+1,1}^{\text {Kronecker }, z}\left(z_{r}, \tau\right) ; z\right)$
Broedel, Duhr, Dulat, Tancredi, '17

- $\tau=\mathrm{const}$
- meromorphic version, only simple poles
- not double periodic!

Iterated integrals on $\mathcal{M}_{1, n}$: Integration along τ

Differential one-forms:

$$
\begin{aligned}
\omega_{k, K}^{\text {Kronecker }, \tau}\left(z_{j}\right) & =(2 \pi i)^{2-k} K(k-1) g^{(k)}\left(z_{j}, K \tau\right) \frac{d \tau}{2 \pi i} \\
& =\frac{K(k-1)}{(2 \pi i)^{K}} g^{(k)}\left(z_{j}, K \tau\right) \frac{d \bar{q}}{\bar{q}}
\end{aligned}
$$

- Integrate in \bar{q}
- No poles in $0<|\bar{q}|<1$.
- Possibly a simple pole at $\bar{q}=0$ ("trailing zero")

Section 3

Physics

Standard tools

- Integration-by-parts identities

Tkachov '81, Chetyrkin '81

- the method of differential equations

Kotikov '90, Remiddi '97, Gehrmann and Remiddi '99

- Laporta algorithm and computer implementations

Laporta '01,
reduze von Manteuffel, Studerus '12,
FIRE Smirnov '15,
KIRA Maierhöfer, Usovitsch, Uwer ' 17

Notation

$N_{F}=N_{\text {Fibre }}: \quad$ Number of master integrals, master integrals denoted by $\quad I=\left(I_{1}, \ldots, I_{N_{F}}\right)$.
$N_{B}=N_{\text {Base }}: \quad$ Number of kinematic variables, kinematic variables denoted by $\quad x=\left(x_{1}, \ldots, x_{N_{B}}\right)$.
$\mathrm{N}_{\mathrm{L}}=N_{\text {Letters }}: \quad$ Number of letters, differential one-forms denoted by $\quad \omega=\left(\omega_{1}, \ldots, \omega_{N_{L}}\right)$.

Differential equations

System of differential equations

$$
d l+A l=0
$$

where $A(\varepsilon, x)$ is a matrix-valued one-form

$$
A=\sum_{i=1}^{N_{B}} A_{i} d x_{i} .
$$

The matrix-valued one-form A satisfies the integrability condition

$$
d A+A \wedge A=0 \quad \text { (flat Gauß-Manin connection). }
$$

Computation of Feynman integrals reduced to solving differential equations!

Simple differential equations

The system of differential equations is particular simple, if A is of the form

$$
A=\varepsilon \sum_{j=1}^{N_{L}} C_{j} \omega_{j}
$$

where

- C_{j} is a $N_{F} \times N_{F}$-matrix, whose entries are (rational or integer) numbers,
- the only dependence on ε is given by the explicit prefactor,
- the differential one-forms ω_{j} have only simple poles.

Henn '13

Transformations

- Change the basis of the master integrals

$$
I^{\prime}=U I
$$

where $U(\varepsilon, x)$ is a $N_{F} \times N_{F}$-matrix. The new connection matrix is

$$
A^{\prime}=U A U^{-1}+U d U^{-1}
$$

- Perform a coordinate transformation on the base manifold:

$$
x_{i}^{\prime}=f_{i}(x), \quad 1 \leq i \leq N_{B}
$$

The connection transforms as

$$
A=\sum_{i=1}^{N_{B}} A_{i} d x_{i} \quad \Rightarrow \quad A^{\prime}=\sum_{i, j=1}^{N_{B}} A_{i} \frac{\partial x_{i}}{\partial x_{j}^{\prime}} d x_{j}^{\prime}
$$

The equal-mass sunrise

It is not possible to obtain an ε-form by a rational/algebraic change of variables and/or a rational/algebraic transformation of the basis of master integrals.
However by factoring off the (non-algebraic) expression ω_{1} / π from the master integrals in the sunrise sector one obtains an ε-form:
$I_{1}=4 \varepsilon^{2} S_{110}(2-2 \varepsilon, x) \quad I_{2}=-\varepsilon^{2} \frac{\pi}{\omega_{1}} S_{111}(2-2 \varepsilon, x) \quad I_{3}=\frac{1}{\varepsilon} \frac{1}{2 \pi i} \frac{d}{d \tau} I_{2}+\frac{1}{24}\left(3 x^{2}-10 x-9\right) \frac{\omega_{1}^{2}}{\pi^{2}} I_{2}$

If in addition one makes a (non-algebraic) change of variables from x to τ, one obtains

$$
\frac{d}{d \tau} I=\varepsilon A(\tau) I
$$

where $A(\tau)$ is an ε-independent 3×3-matrix whose entries are modular forms.

The unequal-mass sunrise

After a redefinition of the basis of master integrals and a change of coordiantes from $\left(x, y_{1}, y_{2}\right)=\left(p^{2} / m_{3}^{2}, m_{1}^{2} / m_{3}^{2}, m_{2}^{2} / m_{3}^{2}\right)$ to $\left(\tau, z_{1}, z_{2}\right)$ one finds

$$
A=\varepsilon \sum_{j=1}^{N_{L}} C_{j} \omega_{j}
$$

with ω_{j} only simple poles,

where ω_{j} is either

$$
2 \pi i f_{k}(\tau) d \tau
$$

where $f_{k}(\tau)$ is a modular form, or of the form

$$
\omega_{k}\left(z_{i}, K \tau\right)=(2 \pi i)^{2-k}\left[g^{(k-1)}\left(z_{i}, K \tau\right) d z_{i}+K(k-1) g^{(k)}\left(z_{i}, K \tau\right) \frac{d \tau}{2 \pi i}\right]
$$

Comments

- It is advantageous to integrate in τ :
- Analytic expressions shorter
- Easier to evaluate numerically
- Boundary condition at $\tau=i \infty$:
- Elliptic curve degenerates, geometric genus equals zero
- Feynman integrals expressible in terms of multiple polylogarithms

Conclusions

- Feynman integrals important in many areas of physics.
- Feynman integrals evaluating to multiple polylogarithms related to iterated integrals on $\mathcal{M}_{0, n}$.
- There is a class of Feynman integrals related to elliptic curves from two loops onwards, evaluating to iterated integrals on $\mathcal{M}_{1, n}$.
- Computation of Feynman integrals is trivial, as soon as the system of differential equations is transformed to

$$
A=\varepsilon \sum_{k=1}^{N_{L}} C_{k} \omega_{k}, \quad \text { with } \omega_{k} \text { only simple poles. }
$$

This form can be reached for

- many Feynman integrals evaluating to multiple polylogarithms
- a few non-trivial elliptic examples

