Direct Integration for Multi-leg Amplitudes: Tips, Tricks, and When They Fail

[arXiv:1712.02785] with J. Bourjaily, A. Mcleod, M. Spradlin, and M. Wilhelm
[arXiv:1805.09326] with J. Bourjaily, Y.-H. He, A. Mcleod, and M. Wilhelm
[arXiv:1805.10281] with J. Bourjaily, A. Mcleod, and M. Wilhelm
[arXiv:1810.07689] with J. Bourjaily, A. Mcleod, and M. Wilhelm
[arXiv:1910.01534] with J. Bourjaily, A. Mcleod, C. Vergu, M. Volk, and M. Wilhelm
[arXiv:1910.14224] with J. Bourjaily, A. Mcleod, C. Vergu, M. Volk, and M. Wilhelm
[arXiv:1912.05690] with J. Bourjaily, M. Volk

Matt von Hippel (Niels Bohr International Academy)

(4) (3) (4) (4) (4)

Disclaimer: Speaker is Supersymmetric

- I work with $\mathcal{N} = 4$ SYM
 - Thus multi-leg: beta function vanishes, amplitudes through five points known in the planar limit [see Papathanasiou's and Bartels's talks]
 - Integrals chosen UV finite, can IR regulate with masses to stay in four dimensions
 - Uniform transcendentality [see Henn's talk]

▶ < ∃ ▶</p>

• Nice integrals, even as a basis for other theories!

What I mean by Direct Integration

Direct hyperlogarithmic integration:

- Rewrite hyperlogarithms in the integrand so that the integration variable appears only in the argument, via a fibration basis
- Partial-fraction rational functions in the integrand in terms of the integration variable
- Up to integration by parts (and regularizing singularities), can then just apply the definition of the hyperlogarithm

$$G(w_1, w_2, \ldots; z) = \int_0^z \frac{1}{x - w_1} G(w_2, \ldots; x) dx$$

• Implemented in Erik Panzer's HyperInt, [Also see his talk]

・ロト ・ 同ト ・ ヨト ・ ヨト

What can go wrong: Algebraic Roots

- Both the fibration basis and partial-fractioning can introduce algebraic roots in the remaining integration variables
- This stops the algorithm: can't fiber or partial-fraction if integration variable is in an algebraic root not linearly reducible
- In some cases, can find systematic change of variables to fix this [see Besier, Van Straten, Weinzierl, also Raab's talk]

$$\begin{split} \int_0^\infty & \frac{d\alpha}{\alpha^2 + 2f\alpha + g} \\ &= \int_0^\infty & \frac{d\alpha}{2\sqrt{f^2 - g}} \left(\frac{1}{\alpha + f - \sqrt{f^2 - g}} - \frac{1}{\alpha + f + \sqrt{f^2 - g}} \right) \\ &= \frac{1}{2\sqrt{f^2 - g}} \log \left(\frac{f - \sqrt{f^2 - g}}{f + \sqrt{f^2 - g}} \right) \end{split}$$

Tips, Tricks, and When They Fail

From my "supersymmetric perspective", looking at a variety of integrals, attempting direct integration

- Sometimes, tricks to avoid algebraic roots (simple, but unexpectedly powerful!)
- Sometimes, roots cancel seeing this can be tricky!
- Sometimes, tricks fail in interesting ways!

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Introduction

- 2 Tips and Tricks for a Rational Result
- 8 Kinematic Square Roots at Symbol Level
- 4 Parametric Square Roots: Elliptic and Beyond
 - 5 Conclusions

Introduction

2 Tips and Tricks for a Rational Result

Kinematic Square Roots at Symbol Level

Parametric Square Roots: Elliptic and Beyond

5 Conclusions

(4) (3) (4) (4) (4)

Minimal Representations: Loop-by-Loop

- Conjecturally, hyperlogarithms in Feynman integrals in 4D have bounded transcendental weight $\leq 2L$
- When possible, want to represent as 2L-fold integrals
- This is not generally true for Symanzik form, one variable per propagator
- Can get closer by parametrizing "loop by loop" [Analogous to loop-by-loop Baikov, see Frellesvig's talk]
- $\bullet\,$ Heuristically, fewer "extra integrals" $\to\,$ fewer chances to introduce spurious algebraic roots

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Good Variables: Momentum Twistor Parametrizations

[1805.10281, Bourjaily, McLeod, MvH, Wilhelm]

- Planar N = 4 SYM has dual conformal symmetry: conformal in dual space x_i x_{i+1} = p_i
- Momentum twistor variables are linear in this symmetry, trivialize momentum conservation, masslessness, by assigning each dual point x_i to a line {z_{i−1}, z_i} in P³ [Hodges]
- Space of lines is six-dimensional, so these variables make Gramian matrices $G = \{G_b^a = (x_a x_b)^2\}$ generically rank six
- Minors larger than 6 × 6 should vanish, implying relations between kinematic variables that involve square roots of 6 × 6 determinants. Momentum twistors rationalize these square roots.

- 本間下 本臣下 本臣下 三臣

Sometimes, this is enough...

These seven- and eight-point classes of integrals run "out of the box" through four loops!

Sometimes it isn't

3

A D N A B N A B N A B N

Splitting the Integration Path

$$\mathcal{I}(\alpha,\beta) \xrightarrow{\int d^{2}\beta} \mathcal{I}(\alpha) = \begin{cases} \int d\alpha_{1}, \int d\alpha_{2} \left\{ \mathcal{I}_{A_{0}}[\not \ni \sqrt{q_{1}}, \sqrt{q_{2}}] \\ \mathcal{I}_{A_{1}}[\ni \sqrt{q_{1}(\alpha_{3}, \alpha_{4})}] \\ \mathcal{I}_{A_{2}}[\ni \sqrt{q_{2}(\alpha_{3}, \alpha_{4})}] \\ \mathcal{I}_{A_{2}}[\ni \sqrt{q_{2}(\alpha_{3}, \alpha_{4})}] \\ \mathcal{I}_{B_{2}}[\ni \sqrt{q_{2}(\alpha_{1}, \alpha_{2})}] \\ \mathcal{I}_{B_{2}}[\ni \sqrt{\widetilde{q}_{2}(\alpha_{1}, \alpha_{2})}] \\ \mathcal{I}_{B_{2}}[\ni \sqrt{\widetilde{q}_{2}(\alpha_{1}, \alpha_{2})}] \\ \mathcal{I}_{B_{2}}[\ni \sqrt{\widetilde{q}_{2}(\alpha_{1}, \alpha_{2})}] \\ \end{cases} \xrightarrow{\mu = 0} \begin{pmatrix} \mathcal{I}_{A_{0}}[\not \Rightarrow \sqrt{q_{1}}, \sqrt{q_{2}}] \\ \mathcal{I}_{B_{1}}[\neg \sqrt{q_{1}(\alpha_{1}, \alpha_{2})}] \\ \mathcal{I}_{B_{2}}[\neg \sqrt{\widetilde{q}_{2}(\alpha_{1}, \alpha_{2}, \alpha_$$

Two types of tricks:

- Divide integrand into pieces which are linearly reducible via one path vs. another, by which contain specific polynomials
- Divide integrand into pieces depending on different square roots, use different change of variables in each

Some integrals require both!

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Kinematic Roots Remain

- Not all kinematic roots are rational in momentum twistors.
- Some are spurious, introduced by the splitting procedure, while some are physical.
- Example of the latter: four-mass box cuts

Introduction

3 Kinematic Square Roots at Symbol Level

Parametric Square Roots: Elliptic and Beyond

5 Conclusions

Matt von Hippel (NBIA)

Identifying Spurious Roots

- Sometimes can rationalize with a change of variables (e.g. Euler substitution), fibrate, then transform back and see the roots cancel
- Sometimes can match series expansion to expansion of an ansatz without square roots
- If these don't work, can at least check the symbol

$$df^{(n)} = \sum f_i^{(n-1)} d \ln \phi_i \quad o \quad S(f^{(n)}) = \sum S(f_i^{(n-1)}) \otimes \phi_i$$

(Lack Of) Unique Factorization

 "The symbol trivializes all identities" if all letters are rational - factor all letters, then expand

 $\cdots \otimes \mathbf{a} \times \mathbf{b} \otimes \cdots = \cdots \otimes \mathbf{a} \otimes \cdots + \cdots \otimes \mathbf{b} \otimes \cdots$

• This fails for algebraic letters: no unique factorization

$$9 = 3 \times 3 = (2 + \sqrt{-5})(2 - \sqrt{-5})$$

- For small number of letters, can find relations by brute force
- Works for example for seven-point two-loop MHV in planar $\mathcal{N} = 4$: 22 letters can be written in terms of 5, which all drop out [1912.05690 Bourjaily, Volk, MvH]

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

Factorization in Prime Ideals

- For more complicated cases, want to do something systematic
- Let's focus on a specific kinematic point: all our symbol entries are (algebraic) numbers
- Instead of working with numbers, work with *ideals*:

$$(a) = \{ma | m \in \mathbb{Z}\}, \quad (a, b) = \{ma + nb | m, n \in \mathbb{Z}\}$$

• Then for the previous example (3), $(2 + \sqrt{-5})$, and $(2 - \sqrt{-5})$ all factor further, giving a unique factorization in prime ideals:

$$(9) = (3)(3) = (2 + \sqrt{-5})(2 - \sqrt{-5}) = (3, 1 + \sqrt{-5})^2(3, 1 - \sqrt{-5})^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Application: an NMHV Octagon

[1910.14224 Bourjaily, Mcleod, Vergu, Volk, MvH, Wilhelm]

• Particular supercomponent of eight-point two-loop NMHV amplitude:

$$\int d\eta_1^1 d\eta_3^2 d\eta_5^3 d\eta_7^4 \mathcal{A}_8^{L=2} = \frac{1}{\langle 1357 \rangle} \begin{bmatrix} 7 & 1 & 1 & 1 & 2 & 3 \\ 6 & N_1 & N_1 & -2 & -8 & N_1 & N_1 & -4 \\ 5 & 4 & 3 & -8 & -6 & 5 \end{bmatrix}$$

- After integration: symbols in 2000 letters with 10 million terms, many distinct algebraic roots
- After factorizing letters: symbols in 35 letters with 5000 terms, only two distinct "physical" square roots
- Cancel in the difference!

- 4 回 ト 4 三 ト 4 三 ト

When the Tricks Fail

- In all of the above cases, we could at least complete the integration, getting hyperlogarithms (that depend on some kinematic root)
- This is not always the case: sometimes, still have non-rationalizable square roots in integration parameters:

$$\sqrt{P(\overrightarrow{\alpha})}$$

- 4 回 ト 4 三 ト 4 三 ト

- Kinematic Square Roots at Symbol Level

Parametric Square Roots: Elliptic and Beyond

Simplest Cases are Elliptic

$$\sqrt{(\alpha - e_1)(\alpha - e_2)(\alpha - e_3)(\alpha - e_4)}$$

[see Weinzierl's talk]

Matt von Hippel (NBIA)

Direct Integration for Multi-leg Amplitudes

∃ → October 8, 2020 21/37

3

< 同 > < 三 >

(Some) More Complicated Cases are Calabi-Yau

[Bloch, Kerr, Vanhove; Broadhurst] [Bourjaily, He, Mcleod, MvH, Wilhelm]

 $\sqrt{P(\alpha_1, \alpha_2, \cdots)}$

→ ∃ →

Matt von Hippel (NBIA)

Direct Integration for Multi-leg Amplitudes

October 8, 2020 22 / 37

What is a Calabi-Yau?

- Compact Kähler manifold with vanishing first Chern class
- Ricci-flat
- Preserves N=1 supersymmetry of compactifications

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

What is a Calabi-Yau?

- Compact Kähler manifold with vanishing first Chern class
- Ricci-flat
- Preserves N=1 supersymmetry of compactifications
- ...not helpful!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Embed the patient in a weighted projective space!

Embed the patient in a weighted projective space!

projective space:

$$(x_1, x_2, \ldots) \sim (\lambda x_1, \lambda x_2, \ldots)$$

Embed the patient in a weighted projective space!

• weighted projective space:

$$(x_1, x_2, \ldots) \sim (\lambda^{w_1} x_1, \lambda^{w_2} x_2, \ldots)$$

Embed the patient in a weighted projective space!

• weighted projective space:

$$(x_1, x_2, \ldots) \sim (\lambda^{w_1} x_1, \lambda^{w_2} x_2, \ldots)$$

• Polynomial should scale uniformly in λ (homogeneous polynomial)

Embed the patient in a weighted projective space!

• weighted projective space:

$$(x_1, x_2, \ldots) \sim (\lambda^{w_1} x_1, \lambda^{w_2} x_2, \ldots)$$

- Polynomial should scale uniformly in λ (homogeneous polynomial)
- If the sum of the coordinate weights equals the overall scaling (degree), it's Calabi-Yau!

24 / 37

Cleanest Example: Scalar Marginal Integrals

• Start with Symanzik form:

$$\Gamma(E-LD/2)\int_{x_i\geq 0} [d^{E-1}x_i]\frac{\mathfrak{U}^{E-(L+1)D/2}}{\mathfrak{F}^{E-LD/2}}$$

 \bullet Graph polynomials ${\mathfrak U}$ and ${\mathfrak F}$ defined by:

$$\mathfrak{U} \equiv \sum_{\{\mathcal{T}\}\in\mathfrak{T}_1}\prod_{e_i\notin\mathcal{T}}x_i, \quad \mathfrak{F} \equiv \left[\sum_{\{\mathcal{T}_1,\mathcal{T}_2\}\in\mathfrak{T}_2}s_{\mathcal{T}_1}\left(\prod_{e_i\notin\mathcal{T}_1\cup\mathcal{T}_2}x_i\right)\right] + \mathfrak{U}\sum_{e_i}x_im_i^2$$

Cleanest Example: Scalar Marginal Integrals

Two cases where things simplify, both for even dimensions:

• E = LD/2: Explored by mathematicians. Superficial divergence from gamma function, if there are no subdivergences can strip this off, no further need for dim reg. Only \mathfrak{U} contributes.

$$\int_{x_i \ge 0} [d^{E-1}x_i] \frac{1}{\mathfrak{U}^{D/2}}$$

• E = (L+1)D/2: Marginal. If finite, can again avoid dim reg. Only \mathfrak{F} contributes.

$$\int_{x_i \ge 0} [d^{E-1}x_i] \frac{1}{\mathfrak{F}^{D/2}}$$

- In D = 2, these are the sunrise/banana graphs!
- Many more cases in D = 4

Marginal Integrals are Calabi-Yau

Let's look at our "special cases".

[Brown 0910.0114] explored the E = LD/2 case, argument for marginal integrals (E = (L + 1)D/2) similar:

- 𝔅 is homogenous, degree L + 1, so 𝔅^{D/2} has degree (L + 1)D/2 = E in E variables
- Direct integration preserves this: each integration removes one variable, and decreases the degree of the denominator by one.
- Suppose we encounter a square root. Root $\sqrt{Q(x_i)}$ will contain a degree 2m polynomial in m variables.
- $y^2 = Q(x_i)$ defines a variety. Give the x_i weight 1, y weight m. Then sum of the weights is equal to degree \rightarrow diagnosed Calabi-Yau!

Example: Massless D = 4

• Specialize to D = 4, massless propagators:

$$\int_{x_i \ge 0} [d^{2L+1}x_i] \frac{1}{\mathfrak{F}^2}$$

ℑ is linear in every variable (x_i² only shows up in the mass term). We may integrate out any one parameter x_j. Writing ℑ ≡ ℑ₀^(j) + x_j ℑ₁^(j):

J

$$\int_{x_i\geq 0} [d^{2L}x_i] rac{1}{\mathfrak{F}_0^{(j)}\mathfrak{F}_1^{(j)}}$$

• Each factor is still linear, so we can integrate in another variable x_k . Writing $\mathfrak{F}_i^{(j)} \equiv \mathfrak{F}_{i,0}^{(j,k)} + x_k \mathfrak{F}_{i,1}^{(j,k)}$:

$$\int_{x_i \ge 0} [d^{2L-1}x_i] \frac{\log \left(\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)}\right) - \log \left(\mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}\right)}{\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)} - \mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}}$$

Example: Massless D = 4

$$\int_{x_i \ge 0} [d^{2L-1}x_i] \frac{\log \left(\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)}\right) - \log \left(\mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}\right)}{\mathfrak{F}_{0,0}^{(j,k)}\mathfrak{F}_{1,1}^{(j,k)} - \mathfrak{F}_{0,1}^{(j,k)}\mathfrak{F}_{1,0}^{(j,k)}}$$

- Denominator is at most quadratic in each remaining variable.
- If irreducibly quadratic in all variables (and discriminants irreducibly cubic or quartic in all other variables), then Calabi-Yau with dimension 2L 2.
- Thus for massless marginal integrals in 4*D*, Calabi-Yau dimension is **bounded**.

- 4 回 ト 4 三 ト 4 三 ト

Is this bound saturated?

Direct Integration for Multi-leg Amplitudes

э

A D N A B N A B N A B N

Observations:

- The L = 2 tardigrade is a two-loop, five-point (three external masses) K3!
- We've looked at other marginal integrals through seven loops, the majority have maximal dimension Calabi-Yaus.
- The L = 3 amoeba is oddly enough *not* maximal dimension.

通 ト イ ヨ ト イ ヨ ト

What about the Traintracks?

- Not marginal: $E = 3L + 1 \neq (L + 1)D/2$ for $L \neq 1$
- Not Symanzik, loop-by-loop:

$$\int_{0}^{\infty} [d^{L}\alpha] d^{L}\beta \frac{1}{(f_{1}\cdots f_{L})g_{L}}$$

$$f_{k} \equiv (a_{0}a_{k-1};a_{k}b_{k-1})(a_{k-1}b_{k};b_{k-1}a_{0})(a_{k}b_{k};a_{k-1}b_{k-1})f_{k-1} + \alpha_{0}(\alpha_{k}+\beta_{k}) + \alpha_{k}\beta_{k}$$

$$+ \sum_{j=1}^{k-1} \left[\alpha_{j}\alpha_{k}(b_{j}a_{0};a_{j}a_{k}) + \alpha_{j}\beta_{k}(b_{j}a_{0};a_{j}b_{k}) + \alpha_{k}\beta_{j}(a_{0}a_{j};a_{k}b_{j}) + \beta_{j}\beta_{k}(a_{0}a_{j};b_{k}b_{j}) \right]$$

$$g_{L} \equiv \alpha_{0} + \sum_{j=1} \left[\alpha_{j}(b_{j}a_{0};a_{j}b_{0}) + \beta_{j}(a_{0}a_{j};b_{0}b_{j}) \right]; \quad (ab;cd) \equiv \frac{X_{a,b} \times C,d}{X_{a,c} \times X_{b,d}}$$

Matt von Hippel (NBIA)

October 8, 2020 32 / 37

Three-Loop K3

- Take codimension L + 1 residue, obstructed by a square root
- Get \sqrt{Q} , where Q is degree 4 in α_2 and degree 6 in α_1 and α_0
- Weights 3 + 1 + 1 + 1 = 6, like the marginal integrals

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wheel/Coccolithophore

- Once again, not marginal, not Symanzik
- Planar, relevant to $\mathcal{N}=4~\text{sYM}$
- Can take a similar series of residues (and a handy re-projectivization) to find weights 4 + 1 + 1 + 1 + 1 = 8, CY₃!

The Theme: Every Example We Understand is $\mathbb{WP}^{k,1,1,1,...}$

- Marginal integrals, the three-loop traintrack, the wheel, all have weights $k + 1 + 1 + 1 \dots = 2k$
- Can think of our singular manifolds as special cases of smooth $\mathbb{WP}^{k,1,1,1,\dots}$, reach through complex structure deformation
- Can calculate Hodge diamonds, etc.

Further Questions

- How often can "planar $\mathcal{N} = 4$ -like" integrals be used?
- Can we do better than tips and tricks, more deterministic algorithm?
- Does direct integration uncover the same Calabi-Yau geometries as other methods? For example, recent leading singularity calculations for traintracks by Vergu & Volk.
- How special/rare is the Calabi-Yau property?

Thank You

This project has received funding from the European Union's Horizon 2020

research and innovation program under grant agreement No. 793151

Matt von Hippel (NBIA)

Direct Integration for Multi-leg Amplitudes

October 8, 2020 37 / 37

э

A D N A B N A B N A B N