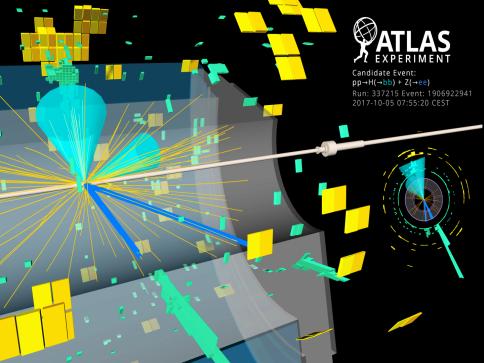
Charm tagging and search for $ZH \rightarrow Ilc\bar{c}$ decay with ATLAS data


SUPRIYA SINHA

Supervisor: Dr. Tatjana Lenz Prof. Jochen Dingfelder

27 August, 2019

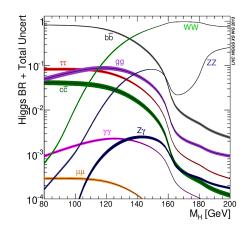
Outline

- Introduction
- 2 b and c-tagging
- 4 Application on $H \rightarrow c\bar{c}$ data
- 5 Results
- 6 Summary

- Introduction
- 2 b and c-tagging
- 3 c-tagging using D^* reconstruction
- 4 Application on $H \rightarrow c\bar{c}$ data
- 5 Results
- **6** Summary

Introduction

b and c


c-tagging using

D* reconstruction

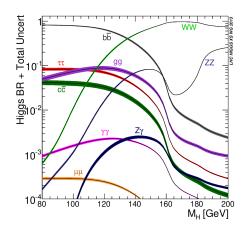
Application oH o car c data

Results

Summary

• Fermionic: $b\bar{b}, \tau\tau, c\bar{c}$, etc.; Bosonic: $WW, ZZ, \gamma\gamma$, etc.

Introduction


b and c

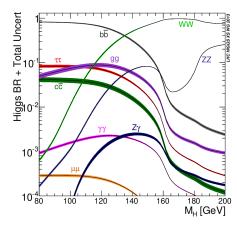
c-tagging using

D* reconstruction

Application of H o car c data

Results

- Fermionic: $b\bar{b}, \tau\tau, c\bar{c}$, etc.; Bosonic: $WW, ZZ, \gamma\gamma$, etc.
- \bullet Decays not just to third generation particles, but second generation particles too, like $c\bar{c}$



b and c-ta

c-tagging using D^* reconstruction

Application of H o car c data

Results

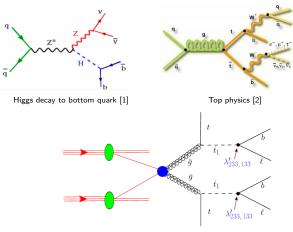
- Fermionic: $b\bar{b}, \tau\tau, c\bar{c}$, etc.; Bosonic: $WW, ZZ, \gamma\gamma$, etc.
- ullet Decays not just to third generation particles, but second generation particles too, like $car{c}$
- $q\bar{q} o ZH o l\bar{l}c\bar{c}$ channel taken for analysis

b and c-tagging

2 b and c-tagging

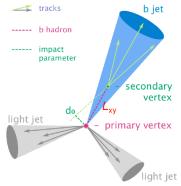
Introduction

b and c-tagging


c-tagging using

D* reconstruction

Application on $H
ightarrow car{c}$ data


Results

- Identification of B-hadrons in a jet
- Often used in analyses containing high p_T b-jets in their final states

BSM searches [3]

Large momentum fraction of b-hadrons from b-quark hadronization

Secondary vertex displaced from the primary vertex [4]

- Long lifetime of b-hadrons (1.5 ps) \Rightarrow Secondary Vertex
- $\bullet \ \ \, \mathsf{High \; mass \; of \; b\text{-}quarks} \Rightarrow \mathsf{large} \; p_{\mathcal{T}} \; \mathsf{product} \Rightarrow \mathsf{broad \; angular \; distribution}$
- B-hadron decay product ⇒ Tertiary vertex

Tertiary vertex from D-hadron decay [5]

SUPRIYA SINHA

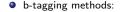
Introduction

b and c-tagging

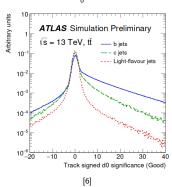
-tagging using

Application of $H \rightarrow c\bar{c}$ data

Results


c-tagging using D^* reconstruction

Application of $H \rightarrow c\bar{c}$ data


Results

Summary

 Search for a variable sensitive to the flavor content of the jet ⇒ used as a discriminator

• Impact parameter based: SV tracks have large IP w.r.t. the PV Define IP significance: $s_{d_0} = \frac{d_0}{\sigma_{d_0}}$

ntroduction

b and c-tagging

or reconstruction

Application or $H \rightarrow c\bar{c}$ data

Results

Summary

 Search for a variable sensitive to the flavor content of the jet ⇒ used as a discriminator

b-tagging methods:

 Secondary vertex based: SV candidates are reconstructed to get SV point

Discrimination based on properties of reconstructed vertex: L_{XY} , invariant mass of the SV, etc.

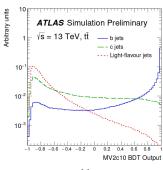
Introduction

b and c-tagging

c-tagging using

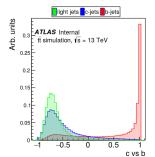
D* reconstruction

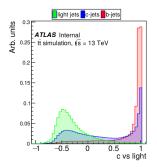
 $H
ightarrow car{c}$ dat


Results

Summary

 $lack ext{Search for a variable sensitive to the flavor content of the jet} \Rightarrow ext{used as a discriminator}$


b-tagging methods:


Combined algorithms: Combines different variables
 Usage of Boosted Decision Trees (BDTs), Neural Networks (NN), etc.

c-tagging

- Similar methods as b-tagging
- Relevant c-hadron properties:
 - Relatively long lifetime: 0.5 1 ps (still shorter than b-hadrons)
 - Decay to a smaller number of charged particles as compared to b-hadrons
- Two multivariate discriminants are trained: separating c-jets from l-jets; separating c-jets from b-jets

SUPRIYA SINHA

Introduction

b and c-tagging

c-tagging using

Application o $H \rightarrow c\bar{c}$ data

Results

- SUPRIYA SINHA
- b and c-tagging

- Similar methods as b-tagging
- Relevant c-hadron properties:
 - Relatively long lifetime: 0.5 1 ps (still shorter than b-hadrons)
 - Decay to a smaller number of charged particles as compared to b-hadrons
- Two multivariate discriminants are trained: separating c-jets from l-jets; separating c-jets from b-jets

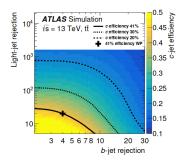


Fig: c-jet tagging efficiency as a function of b-jet and l-jet rejection [7]

Introduction

2 b and c-tagging

4 Application on $H \rightarrow c\bar{c}$ data

6 Results

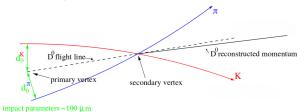
Introduction

100

c-tagging using

D* reconstruction

 $H o c \bar{c} \; {\sf data}$


Results

Summary

- Require: a channel with a strong predominance of charm flavour
- c- quark hadronization:

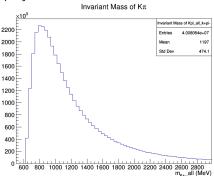
$$f(c \to D^0) = 0.557 \pm 0.023,$$

 $f(c \to D^+) = 0.226 \pm 0.010,$
 $f(c \to D^{*+}) = 0.238 \pm 0.007.$

• Reconstructing: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$ BR $(D^{*+} \rightarrow D^0 \pi^+) \approx 67.7\%$ BR $(D^0 \rightarrow K^- \pi^+) \approx 3.9\%$

- Need: a channel with strong predominance of charm flavour
- Reconstructing: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$
- Selection and reconstruction:
 - $trkP_T > 1 \text{ GeV}$
 - Kaon and Pion mass hypothesis for each track
 - \bullet Considered all possible combinations of oppositely charged $K\pi$ candidates per jet

Need: a channel with strong predominance of charm flavour


• Reconstructing: $D^{*+} o D^0 \pi^+ o (K^- \pi^+) \pi^+$

Selection and reconstruction:

• $trkP_T > 1 GeV$

• Kaon and Pion mass hypothesis for each track

ullet Considered all possible combinations of oppositely charged $K\pi$ candidates per jet

Introduction

minoduction

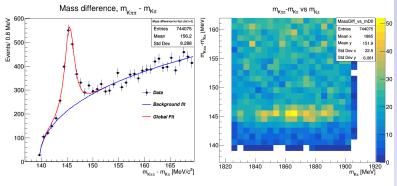
c-tagging using

D* reconstruction

Application on H o car c data

Results

- - Need: a channel with strong predominance of charm flavour
 - Reconstructing: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$
 - Selection and reconstruction:
 - $trkP_{\tau} > 1 \text{ GeV}$
 - Kaon and Pion mass hypothesis for each track
 - Considered all possible combinations of oppositely charged $K\pi$ candidates per jet
 - $K\pi$ mass window: $|m_{K\pi} 1864.83| < 40 \; MeV$
 - Vertex reconstruction of all candidates within this window
 - For Kππ mass reconstruction:
 - Third track (slow pion) with charge opposite to the corresponding kaon
 - Distance between slow pion track and the reconstructed $K\pi$ vertex < 1 mm in both, the xy-plane and the z-axis $-\Delta R(\pi_{slow}, K\pi) \leq 0.15$
 - $p_T(K\pi\pi) > 20 \text{ GeV}$
 - $-\frac{p_T(K\pi\pi)}{\sum p_T} > 0.2$, where $\sum p_T$ is the sum of trk p_T in a cone of $\Delta R < 0.4$ around the direction of D^* momentum


Reconstructed D*

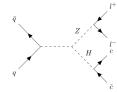
Charm tagging in $H \rightarrow c\bar{c}$ decay

SUPRIYA SINHA

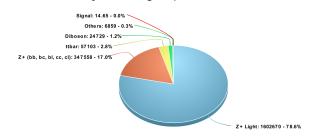
Introduction
b and c-tagging
c-tagging using D^* reconstruction
Application on $H \rightarrow c\bar{c}$ data

Signal fit (Modified Gaussian):

$$S = Gauss^{mod} \propto exp[-0.5.x^{(1+\frac{1}{1+0.5x})}], where x = \left| \frac{(\Delta m - \Delta m_0)}{\sigma} \right|$$


Fit values: $\Delta m_0[MeV] = 145.43 \pm 0.06$, $\sigma(\Delta m_0)[MeV] = 0.87 \pm 0.07$

World average: $\Delta m_0 = 145.421 \pm 0.010 \ MeV$


ullet Background fit: $B \propto (\Delta m - m_\pi)^lpha \mathrm{e}^{-eta(\Delta m - m_\pi)}$

- Introduction
- 2 b and c-tagging
- 3 c-tagging using D* reconstruction
- 4 Application on $H \rightarrow c\bar{c}$ data
- 6 Results
- 6 Summary

• Signal: $qq \rightarrow ZH$, with $ZH \rightarrow I^+I^-c\bar{c}$, where $I=e,\mu$

- SM branching fraction for Higgs decay to a pair of charm quarks is predicted to be 2.9%
- Backgrounds: Z+jets, tt̄, Diboson (ZZ, WZ, WW) and a small contribution from W+jets and single top

SUPRIYA SINHA

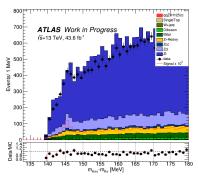
Introduction

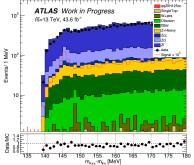
and the second

c-tagging using

Application on $H \rightarrow c\bar{c}$ data

Results



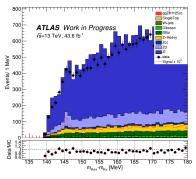

and c tag

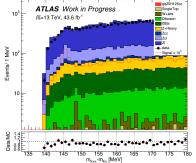
c-tagging using

Application on $H \rightarrow c\bar{c}$ data

Results

- Major contribution: Z+ light jets
- Signal peaks at 145 MeV
- Backgrounds from Zcl and Zcc show a peak too



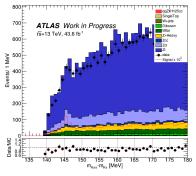

and c-tag

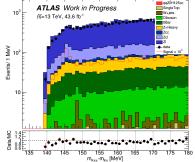
c-tagging using

Application on $H \rightarrow c\bar{c}$ data

Results

- Major contribution: Z+ light jets
- Signal peaks at 145 MeV
- Backgrounds from Zcl and Zcc show a peak too
 - \Rightarrow Must find a suitable parameter to distinguish the signal from the backgrounds:




and c-ta

c-tagging using

Application on $H \rightarrow c\bar{c}$ data

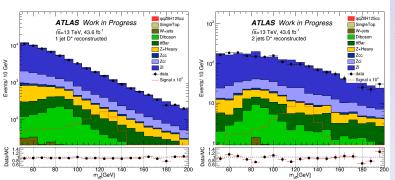
Results

- Major contribution: Z+ light jets
- Signal peaks at 145 MeV
- Backgrounds from Zcl and Zcc show a peak too
 - \Rightarrow Must find a suitable parameter to distinguish the signal from the backgrounds: $m_{c\bar{c}}$

Introduction

c-tagging using

Application on $H \rightarrow c\bar{c}$ data


Results

Summary

• Jets which pass D^* reconstruction and ΔR cut used to evaluate $m_{c\bar{c}}$

Analysis split into two:

Exactly two jets D* reconstructed

Visible signal and background distinction

h and c-tagging

tagging using

H o car c dat

Results

Summary

Introduction

2 b and c-tagging

3 c-tagging using D* reconstruction

4 Application on $H \rightarrow c\bar{c}$ data

6 Results

- Binned likelihood approach
- Using 15 uniform width bins in the range of $50 \, GeV < m_{c\bar{c}} < 200 \, GeV$
- Upper limits calculated on the parameter μ , the ratio of measured signal yield to the prediction from the SM

Case	Expected limit
At least one jet D* tagged Exactly two jets D* tagged	234 897

Observed (Expected) Limits from the BDT c-tagging ≤ 150

Yields

SUPRIYA SINHA

ntroduction

Sample	Yield \pm (stat.) (Fraction of Total Sim. %)			le soul s
Sample	Pre- selection	1 jet D* tagged	2 jets D* tagged	b and c-
Z + jets	1950258±5035 (95.647%)	256342±1385 (94.473%)	8996 ± 150 (92.323%)	c-taggin
Z + ll	1602670±3581 (78.600%)	211023 ± 989 (77.771%)	7246 ± 112 (74.363%)	D* reco
Z + cl	190310 ± 734 (9.333%)	25135 ± 211 (9.263%)	999 ± 21 (10.252%)	Applicat
$Z + \mathit{bl}$	107915 ± 318 (5.292%)	14464 ± 85 (5.330%)	560 ± 8 (5.747%)	$H \rightarrow c\bar{c}$
Z + cc	23830 ± 230 (1.168%)	2742 ± 58 (1.010%)	99 ± 6 (1.016%)	Results
Z + bb	18443 ± 103 (0.904%)	1799 ± 24 (0.663%)	52 ± 2 (0.533%)	Summar
Z + bc	7090 ± 69 (0.347%)	976 ± 18 (0.359%)	38 ± 1 (0.389%)	
tī	57103 ± 88 (2.818%)	9615 ± 36 (3.543%)	475 ± 8 (4.874%)	
Diboson	24729 ± 43 (1.220%)	4264 ± 17 (1.571%)	224 ± 2 (2.301%)	
W + jets	2883 ± 229 (0.142%)	537 ± 63 (0.198%)	24 ± 3 (0.247%)	
Single top	2349 ± 29 (0.116%)	358 ± 11 (0.132%)	17 ± 2 (0.179%)	
$qq \rightarrow Z(ll)H(cc)$	14.65 ± 0.02 (0.000%)	3.11 ± 0.01 (0.001%)	0.198±0.002 (0.002%)	
Total Sim.	2039004 ± 5431	271338 ± 1514	9744 ± 165	
Data	2025900 ± 1423	264229 ± 514	8953 ± 94	

Event yields for data and simulation for D^{*} reconstructed jets - High acceptance rate

Introduction

h and c-t

tagging using
* reconstruction

Application or $H \rightarrow c\bar{c}$ data

Results

Summary

Sample	Yield \pm (stat.) (Fraction of Total Sim. %)		
Sample	Pre- selection	2 jets BDT c-tagged	
Z + jets	1950258 ± 5035 (95.64%)	472 ±48 (85.81%)	
Z + ll	1602670 ± 3581 (78.60%)	23 ±6 (4.18%)	
Z + cl	190310 ± 734 (9.33%)	70 ± 8 (12.72%)	
$Z + \mathit{bl}$	107915 ± 318 (5.29%)	9 ± 2 (1.63%)	
Z + cc	23830 ± 230 (1.16%)	306 ± 25 (55.63%)	
Z + bb	18443 ± 103 (0.90%)	43 ± 4 (7.81%)	
Z + bc	7090 ± 69 (0.34%)	19 ± 3 (3.45%)	
tŧ	57103 ± 88 (2.81%)	51 ± 36 (9.27%)	
Diboson	24729 ± 43 (1.22%)	22 ± 1 (0.04%)	
W + jets	2883 ± 229 (0.14%)	$0.3 \pm 0.2 \; (0.00\%)$	
Single top	2349 ± 29 (0.11%)	1.4 ± 0.4 (0.25%)	
$qq \rightarrow Z(ll)H(cc)$	14.65 ± 0.02 (0.00%)	$0.162 \pm 0.001 (0.02\%)$	
Total Sim.	2039004 ± 5431	550 ± 51	
Data	2025900 ± 1423	784 ± 28	

Event yields for data and simulation for BDT c-tagged jets - Low acceptance rate, high signal efficiency with respect to backgrounds

Introduction

c-tagging using

D* reconstruction

Application on $H \rightarrow c\bar{c}$ data

Results

Summary

- High value of upper limit may arise due to:
 - ① Insufficient efficiency of D^* reconstruction: Limit for 'exactly 2 D^* reconstructed jets' higher than the limit for 'at least one D^* reconstructed jet' case
 - ② Loss of events due to fragmentation of charm: D^* reconstruction is performed only on 24% of the charm flavoured jets.

Visible from double charm background efficiency: Zcc efficiency reduces; Zcl and Zbc efficiency increases after D^* tag \Leftrightarrow effect multiplied for double c-events.

Introduction

2 b and c-tagging

3 c-tagging using D* reconstruction

4 Application on $H \rightarrow c\bar{c}$ data

6 Results

c-tagging using

D* reconstruction

pplication on $I
ightarrow car{c}$ data

Results

- Analysis in broadly two parts:
 - Reconstruction of D^* mesons: $m_{K\pi\pi}-m_{K\pi}$ peak at 145.43 \pm 0.06 MeV close to the world average of 145.42 \pm 0.01 MeV
 - Implementing c-tagging on $H \rightarrow c\bar{c}$ data: Obtained an upper limit on signal strength, which is considerably higher than the BDT c-tagging method due to anticipated reasons
- $H \rightarrow c\bar{c}$ decays remain one of the challenging decays. Current c-tagging algorithms: 41% efficient
- With this work, one can rule out the possibility of using this method for charm tagging for cross-section limit calculation purposes; room still open for the use of D* reconstruction for data validation techniques

Introduction

and c-tag

c-tagging using D^* reconstruction

 $H \rightarrow c\bar{c}$ data

Results

Summary

1 Searches for Higgs Boson at CDF;

 $\label{limits} $$ $ $ \t: \w.\phys.sinica.edu.tw/~smwang/as_cdf_atlas/cdf/physics/sm_higgs/sm_higgs.html $$$

Permilab Today;

https://www.fnal.gov/pub/today/archive/archive_2013/images/Picture_physics_84.jpg

Multi-leptons and Top-jets in the Hunt for Gluinos in R-parity Violating Supersymmetry; S. Biswas et al:

https://link.springer.com/content/pdf/10.1007%2FJHEP06%282014%29012.pdf

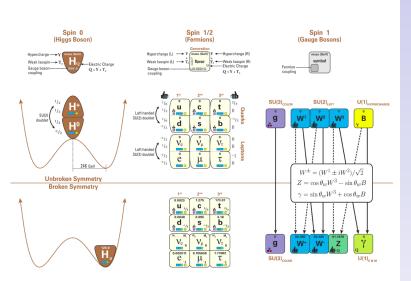
- Secondary vertex displaced from the primary vertex- diagram by Nazar Bartosik; https://commons.wikimedia.org/wiki/File:B-tagging_diagram.png
- Tertiary vertex from D-hadron decay; https: //indico.cern.ch/event/93145/attachments/1101405/1571210/Sem3_btag.pdf
- Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run; https://cds.cern.ch/record/2160731/files/ATL-PHYS-PUB-2016-012.pdf
- Search for the Decay of the Higgs Boson to Charm Quarks with the ATLAS Experiment; Phys. Rev. Lett. 120 (2018) 211802; https://arxiv.org/pdf/1802.04329.pdf

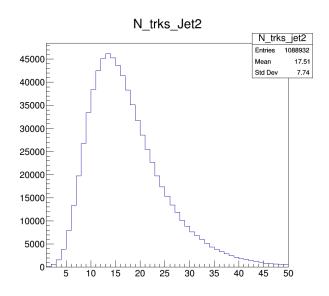
Introduction

h and c-tai

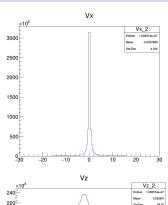
c-tagging using

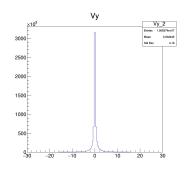
D* reconstruction

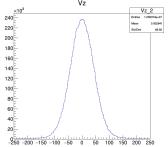

Application o $H \rightarrow c\bar{c}$ data

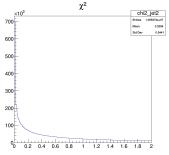

Results

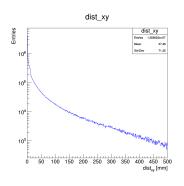
- The ATLAS Collaboration, Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment; DOI:10.1103/PhysRevLett.120.211802, 2018.
- ATLAS flavor tagging group; b- tagging in ATLAS
 https://indico.cern.ch/event/242419/contributions/520667/attachments/412165/572722/B-tag2012.pdf
- The ATLAS Collaboration, Search for H → cc̄ decays in associated ZH production; ATLAS Note HIGG-2017-01
- The ATLAS Collaboration, b-jet tagging calibration on c-jets containing D*+ mesons; ATLAS-CONF-2012-039
- CMS Collaboration, Measurement of associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$; Eur. Phy. J. C(2019) 79:269


Higgs particle


SUPRIYA SINHA






Vertex obtained

