

Particle-in-cell simulations for pedestrians

Martin Pohl

Relevant scales in space: gyration

$$
\Omega_L = \frac{eB}{mc} = (20 \text{ Hz})B_{\mu G} \frac{m_e}{m_x}
$$

$$
r_L = \frac{v}{\Omega_L} = (10^9 \text{cm}) \frac{p_x}{m_e c B_{\mu G}}
$$

Relevant scales in space: plasma oscillations

$$
\omega_p = (60 \text{ kHz}) \sqrt{n_e \frac{m_e}{m_x}}
$$

$$
\lambda_s = \frac{c}{\omega_p} = 5 \text{ km}
$$

Compare Coulomb scattering frequency and plasma frequency

collective plasma interactions dominate in space

we do not a priori know the distribution function

How to describe matter in space?

Always: Maxwell's equation

Hydrodynamics needs knowledge of the EoS

Kinetic model solves for distribution function

Kinetic descriptions:

Boltzmann equation

$$
f_c = \frac{\partial f}{\partial t} + \dot{\vec{x}} \frac{\partial f}{\partial \vec{x}} + \dot{\vec{p}} \frac{\partial f}{\partial \vec{p}}
$$

Solve equation of motion of many particles Particle-in-cell simulations

Particle-in-cell

Solve equation of motion for each particle

Derive the distribution function $f = \sum \delta(x - x_i)\delta(p - p_i)$

Solve Maxwell's equations on a grid

Interpolate information between grid points and particles

The challenge

Supernova remnant

The challenge

We use fluid methods for gas on large scales

We use kinetic methods for gas on very small scales

We always use kinetic methods fo energetic particles

The challenge

PIC simulations must resolve the electron skin length

- **Can model shocks and plasma instabilities**
- **but not the big picture**

Grid scale $\Delta << \lambda_{\text{s}}$ \rightarrow Need length exceeding 10⁴ Δ per direction

Suppose 100 particles per cell at least 10¹⁰ particles in 2D

→ At least TB-scale RAM needed → massive parallelization

Start with a solution to Maxwell's equation

You only need to update the fields

$$
\delta B \propto \nabla x E + j \qquad \Rightarrow \nabla \delta B = \nabla j = \frac{\partial n_e}{\partial t} = \nabla \frac{\partial E}{\partial t} = 0
$$

Keeping all particles and having number continuity implies we only solve time-derivative equations.

Field update $\delta E = \delta t \nabla xB$

How to solve this equation?

Explicitly using a staggered grid B and E displaced by a half timestep B and E also spatially displaced by half a grid cell

Consider
$$
\frac{\partial X}{\partial t} = Y(t)
$$
 and solve for discrete t_i

Taylor-expand *Y(t)* **around** *ti+0.5* **and integrate.**

$$
X(i + 1) = X(i) + \delta t Y(i + 0.5) + \mathcal{O}(\delta t^2)
$$

Automatically second-order accurate. Implicit methods are better, but much more expensive.

Consider
$$
\frac{\partial}{\partial x}X(x,t) = \frac{\partial}{\partial t}Y(x,t)
$$
 and solve for discrete x_i

and assume $X, Y \propto \exp(i k x - i \omega t)$

You find

$$
\frac{\widetilde{X}}{\Delta}\text{sin}\left(\frac{k\Delta}{2}\right)=-\frac{\widetilde{Y}}{\delta t}\text{sin}\left(\frac{\omega\delta t}{2}\right)
$$

Amplication to electromagnetic waves

Dispersion relation in vacuum

Phase speed below *c*

CFL Parameter

 $\int c \, \delta t$ Δ

Grid Cherenkov instability

We use a finite number of particles per cell

- **Residual collisions**
- **Spurious heating**
- **Missing resonances**

Residual collisions

If particles were point-like \rightarrow **electrostatic potential ~ 1/r**

Treat particles as extended structures

- **Suppresses binary collisions**
- **Provides interpolation to grid**

Residual collisions

Scattering involves fluctuations in the density of particles, *n*

Consider a box of size R at distance R left and right of trajectory

Deflection by density fluctuation

Mean free path for scattering $\lambda \propto n$

Optimization needed between low collisionality and expense

Residual collisions

Electric field fluctuations over shape size, *R* $\bm{E} \propto$ $q\sqrt{n}R^3$ \mathbb{R}^2 ∝ $\mathbf{1}$ nR

Equipartition of field noise with temperature $\bm{U_{ES}} \propto$ $\mathbf{1}$ nR $\propto kT$

Cold plasma requires many simulated particles

Missing resonances

Plasma instabilities may involve narrow resonances

TeV pair beams in intergalactic space

Longitudinal electrostatic mode

Velocity resonance

Growth rate real parameters

Missing resonances

- **We must have particles in the resonance band large** *n*
- **Our grid must carry the frequency/wavenumber**

Grid of N cells of size Δ

 \rightarrow δ k=2 π /N Δ must be smaller than Δ k of resonance AND resonance must be covered by the grid, $\delta k / k > 2/N$

Lower and upper limit on δ **k!**

The How-to: scales

Collisionless shock: Thickness given by ion gyration

$$
L = \frac{v_{sh}}{\Omega_i} = \frac{cv_{sh}}{v_A \omega_{pi}} = M_A \lambda_s \sqrt{\frac{m_i}{m_e}}
$$

Too many grid cells? -> Reduce mass ratio and resolution

Summary

PIC simulations are an ab-initio tool to study kinetic processes

Particularly useful for collisionless media in space

Besides the Vlasov equation the only means to obtain the distribution function

Limited range of scales even for modified parameters (e.g. mass ratio)

Technically and computationally very demanding