

Direct optimization of discovery significance

A. Mohamed, D. Krüecker, I. Melzer-Pellmann, <u>I. Pidhurskyi</u>, O. Turkot

- SUSY
- DNN
- Discovery significance
- Binary classification
- Multiclass
- Summary

SUSY is a principle that proposes a relationship between two basic classes of elementary particles: bosons and fermions.

Each particle from one group would have an associated the spin of which differs by a half-integer. Bosons (integer-valued spin) PHOTINO SELECTRON Z BOSON

SUSY

Fermions (half-integer spin)

- Solves
 - hierarchy problems
 - Higgs mass
 - o cosmological constant problem
 - 0 ...
- DM candidates
- Grand unification
- A chance for string theory
- ..

2

Lightest Supersymmetric Particle (LSP).
One of the main DM candidates.

3

Main backgrounds:

- b-jets (and may also have jets from hadronic W-decays)
- leptons from W-decays (we constrain events to have 1 lepton)
- Missing Transverse Energy (MET) due to neutralinos and neutrinos
- and kinematics ...

can discriminate signal and background by kinematic features

MET

 $=M_{W,T}\sim M_W$

Discovery significance

arXiv: 1806.00322

Classic approach:

- optimize accuracy
- loss e.g. crossentropy

HEP approach:

- optimize significance i.e. less signal but pure
- approximated with Asimov estimate, Z_A
- loss = $1/Z_{\Delta}$

Discovery significance

HEP approach:

- optimize significance i.e. less signal but pure
- approximated with Asimov estimate, Z_A
- loss = $1/Z_{\Delta}$

Binary classification

Note: using data for 2016 (35.9 fb⁻¹)

- Pure signal sample separated
- High significance is reached
- …even with 50% background uncertainty

Classification after training for $\sigma_{\rm b}$ = 30%

significance > 8σ even at σ_b = 50%

Binary classification

$$M_{LSP} = 1000 \text{ GeV}$$

 $M_{gluino} = 1900 \text{ GeV}$

Binary classification

Note: using data for 2016 (35.9 fb⁻¹)

 Mass point beyond the limit obtained with 130 fb⁻¹ of data => still high significance.

Summary

Obtained results:

- Implemented Asimov estimate as loss for DNN training.
- New approach outperforms classic crossentropy.
- Applied to mass points not excluded by the latest limits
 - => better limits can be obtained.

Also studied:

 Multiclass with Asimov loss combined with crossentropy does not improve results compared to binary classification.

