

W Identification in the full hadronic supersymmetric decay chain

Friederike Nowak

Bundesministerium für Bildung und Forschung

- 1. introduction
- 2. matching efficiency of the W/Z
- 3. cut-based analysis
- 4. the TMVA Package
- 5. summary and outlook

the mSugra parameter space

LM4:

- $M_0 = 210 \, GeV$ $M_{1/2} = 285 \, GeV$ $A_0 = 0 \, GeV$ $\tan \beta = 10$ $sign(\mu) = +$
- $M_{\tilde{g}} = 695 \, GeV$ $M_{\tilde{q}} \sim 660 \, GeV$ $M_{\chi_{1}^{-}} = 210 \, GeV$ $M_{\chi_{1}^{0}} = 110 \, GeV$

PTDR, Vol2

supersymmetric events

R-Parity conserving:

Always 2 Sparticles will be produced

In every cascade there will be 2 Lightest Supersymmetric Particles (LSP)

CMS IN 2006/012, L.Pape

mass edges

MatchedEdge

Entries

Mean

RMS

678

445.6

77.27

6

800

W/Z matching efficiency

Fastjet, D = 0.6

W/Z matching efficiency

- 1. introduction
- 2. matching efficiency of the W/Z
- 3. cut-based analysis
- 4. the TMVA Package
- 5. summary and outlook

cut-based analysis

reminder: in every event there will be two cascades. This means a lot of Jets wich do not belong to the W/Z

all W/Z candidates

all matched W/Z

matched W from the example cascade

combinatorical background

W/Z Candidates: every dijet mass lying between 70 GeV and 130 GeV

cut-based analysis

cut-based variables

12

background: combinatorical bg, formed by the jets from both decay chains SM – background assumed under control Cascade: example Cascade producing a W

			# W	Signal Efficiency		# W Cand bg rej		Purity	
Cuts		All	Cascade	All	Cascade			All	Cascade
None		2478	8 790	100.0%	100.0%	24423	0.0%	10.2%	3.3%
Theta*	<0.8	2250	720	90.8%	91.1%	19606	20.9%	11.5%	3.6%
Wpt	>60 && <350	2081	672	84.0%	85.0%	14099	45.2%	14.8%	4.8%
Dphi J,W	>1.6	1395	490	56.3%	62.0%	8118	69.4%	17.2%	6.0%
Dphi Met,W		949	344	38.3%	43.0%	4966	81.7%	19.1%	7.0%

$$\epsilon_{signal} = \frac{number of W_{found}}{number of W_{NoCuts}}$$
$$rej_{bg} = 1 - \frac{number of bg - events}{number of bg - events_{NoCuts}}$$

$$pur = \frac{number of W_{found}}{number of W_{cand}}$$

13

the Toolkit for MultiVariante data Analysis is an enviroment for processing and parallel evaluation of multivariant classification methods (Likelihood, Artificial Neural Networks, Boosted Decision Trees, ...).

all classifier see the same training and test data

advantage: the input variables will be decorrelated and condensed to one single scalar output variable, which is used for discriminate between background and signal

the TMVA package

summary and outlook

summary:

in large parts of the mSugra phase space a lot of W and Z are produced. To measure mass edges in a full hadronic decay chain it will be important to find those.

to distinguish between the W/Z and the combinatorical background a cut-based analysis was tested and compared to a generic.

outlook:

the Particle Flow-algorithm is expected to have a better performance in low Pt Jet reconstruction than CaloTower Jets

optimise variables and find new ones for cut-based analysis and TMVA

consider standard model-background: QCD, ttbar, W+Jets, Z+Jets ...