Search for a pair of pseudoscalars in decays of the Higgs boson in CMS

Sandra Consuegra Rodríguez (DESY) on behalf of the CMS collaboration

Workshop on Connecting Insights in Fundamental Physics: Standard Model and Beyond, Corfu, 06.09.2019

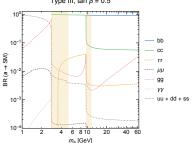
Motivation:

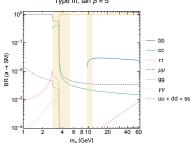
- Discovery of the Higgs boson lead to extensive measurements to probe its consistency with Standard Model (SM) predictions
- Branching fraction of 34% into exotic decay modes still allowed by existing data [JHEP 1608 (2016) 045] (Run I combined ATLAS and CMS analysis)
- Exotic Higgs decays → natural signature of very broad class of beyond the SM theories

2HDM Models:

(already strongly constrained by existing data)

2HDM+S Models:


three CP-even $(h_{1,2,3})$, two CP-odd $(a_{1,2})$, and two charged Higgs states (H^+, H^-)


Constrains set for the 2DHM models avoided

[Phys.Rev. D90 (2014) no.7, 075004]

Type III. $\tan \beta = 0.5$

Type III. $\tan \beta = 5$

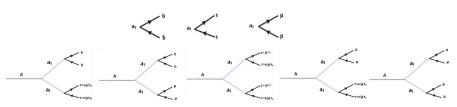
Motivation:

> CMS → Dedicated searches with Run I and a fraction of Run II already done and others currently ongoing

This talk: Assessment of the status of exotic Higgs decays searches to a pair of light pseudoscalars at CMS after LHC Run II, with emphasis on high luminosity projections

> Overview of the Run-2 analyses:

Fully leptonic analysis:


$$h \to a_1 a_1 \to 4\tau$$

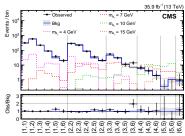
 $h \to a_1 a_1 \to 2\mu 2\tau$

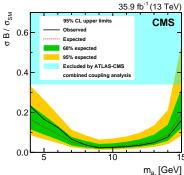
$$h \rightarrow a_1 a_1 \rightarrow 4\mu$$

• (complementary mass range probed)

$$h \rightarrow a_1 a_1 \rightarrow 2b2\tau$$

 $h \rightarrow a_1 a_1 \rightarrow 2u2b$

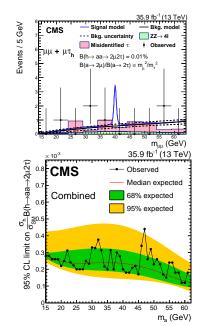

 \bullet same mass range probed (cleaner signature in $a\to \mu\mu$ leg vs. higher BR of $a\to \tau\tau$ leg)



$h \rightarrow a_1 a_1 \rightarrow 4\tau$ [NEW]

[arXiv:1907.07235v1] (Submitted to Phys. Lett. B)

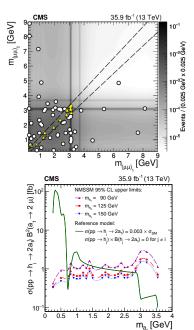
- > Branching fraction:
 - \bullet For Type-III 2HDM+S models enhanced $a_1\to\tau\tau$ decay rate at high values of $\tan\beta$
- > Event selection: two muon-track pairs
- > m_{a_1} region probed: 4 GeV $< m_{a_1} <$ 15 GeV
- Events from h→ a₁a₁ → 2µ2τ can also enter the signal region (treated as a part of the signal)
- Main background: QCD-multijet events
- Final discriminant: binned maximum-likelihood fit to the 2D (m₁, m₂) distribution



$h \to a_1 a_1 \to 2 \mu 2 \tau$

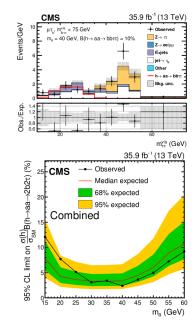
> Branching fraction:

$$\frac{\Gamma(a \rightarrow \mu \mu)}{\Gamma(a \rightarrow \tau \tau)} = \frac{m_{\mu}^2 \sqrt{(1 - \frac{2m_{\mu}}{m_a})^2}}{m_{\tau}^2 \sqrt{(1 - \frac{2m_{\tau}}{m_a})^2}}$$


- > Event selection: opposite-sign(OS) pair of isolated muons and OS pair of isolated τ candidates
- > m_{a_1} region probed: 15 GeV $< m_{a_1} <$ 62.5 GeV
- > Events from $h \rightarrow a_1 a_1 \rightarrow 4\tau$ can also enter the signal region (treated as a part of the signal)
- Main background: jets misidentified as τ leptons
- > Final discriminant: unbinned maximum-likelihood fit to the $m_{\mu\mu}$ invariant mass distribution

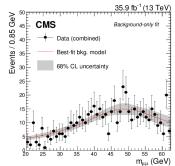
$h \to a_1 a_1 \to 4\mu$

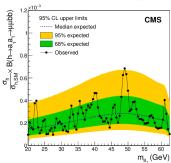
[Phys.Lett. B796 (2019)]


- > Event selection: exactly 2 dimuons
- Dimuon masses consistent with each other to within 5 times detector resolution
- > m_{a_1} region probed: 0.25 GeV $< m_{a_1} <$ 3.55 GeV (lowest mass range probed)
- Main background: b quark pair production (in general very small background contribution in signal region)
- > Final discriminant: unbinned maximum-likelihood fit to the 2D $(m_{(\mu\mu)_1},m_{(\mu\mu)_2})$ distribution

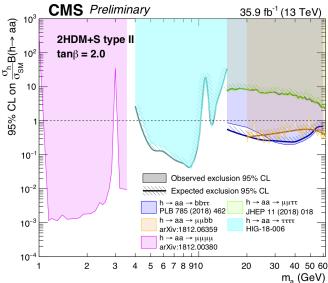
$h \to a_1 a_1 \to 2b2\tau$

[Phys.Lett. B785 (2018) 462]


- > Branching fraction:
 - \bullet Above 10% in Type-II 2HDM+S models and $\tan\beta>1$
 - ullet Up to about 50% in Type-III 2HDM+S models with aneta pprox 2
- > Event selection: Three different $\tau\tau$ final states: e μ , e τ_h , and $\mu\tau_h$, with at least one b-tagged jet
- > m_{a_1} region probed: 15 GeV $< m_{a_1} <$ 60 GeV
- > Main background: $t\bar{t}$ and Z $\rightarrow \tau \tau$ production
- > Final discriminant: binned maximum likelihood fit to the $m_{ au au}^{vis}$ distribution



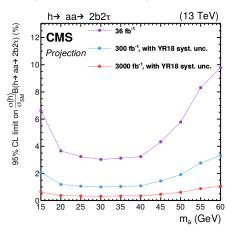
$h \to a_1 a_1 \to 2\mu 2b$


[Phys.Lett. B795 (2019)]

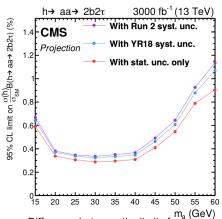
- > Branching fraction:
 - \bullet For $tan\beta=2,\,ma_1=30$ GeV in Type-III 2HDM+S models: $2\cdot B(a_1\rightarrow bb)\cdot B(a_1\rightarrow \mu^+\mu^-)=1.7\!\!\times\!\!10^{-3}$
- > Event selection: at least 2 b jets and 2 opposite sign muons
- > m_{a_1} region probed: 20 GeV $< m_{a_1} <$ 62.5 GeV
- Background: Modeled with a set of analytical functions, using the discrete profiling method
- Final discriminant: unbinned maximum-likelihood fit to the m_{μμ} invariant mass distribution

Summary of $h(125) \rightarrow aa$ searches at 13 TeV at CMS:

Higgs Exotic Decays to light pseudoscalars at the HL-LHC

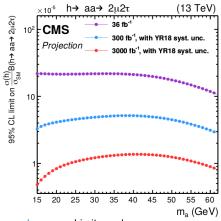

[CMS-PAS-FTR-18-035]

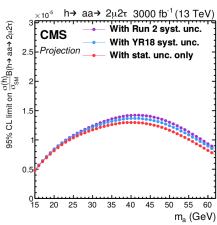
- > CMS detector will be substantially upgraded
- > 2 scenarios for treatment of systematic uncertainties at the HL-LHC:
- "Run 2 systematic uncertainties" scenario:
 - All experimental and theoretical systematic uncertainties:
 - -unchanged with respect to Run 2 analyses reference
 - -kept constant with integrated luminosity
 - allows for comparisons with current analyses


- "YR18 systematics uncertainties" scenario:
 - Theoretical uncertainties reduced by a factor of two with respect to Run 2 analyses reference
 - Experimental systematic uncertainties scale with square root of integrated luminosity until reaching a defined lower limit
 - more realistic given the expected conditions for the HL-LHC
- All uncertainties related to limited number of simulated events neglected
- Intrinsic statistical uncertainty in the measurement reduced by a factor $\frac{1}{\sqrt[2]{R_L}}$ (R_L : projection of integrated luminosity divided by that of reference Run 2 analysis)

Projections of $h \rightarrow a_1 a_1 \rightarrow 2b2\tau$ **for the HL-LHC**

[CMS-PAS-FTR-18-035]


• Limits improve proportionally to square root of integrated luminosity


- Difference between the limits for systematic uncertainties Run 2 and YR18 scenarios, of the order of 5%
- Limits become another 5% better if all systematic uncertainties are neglected

Projections of $h \rightarrow a_1 a_1 \rightarrow 2\mu 2\tau$ **for the HL-LHC**

[CMS-PAS-FTR-18-035]

- low m_{a_1} : Limits scale inverse-proportionally to the luminosity
- high m_{a_1} : Limits improve proportionally to square root of integrated luminosity

ullet Difference between the limits for systematic uncertainties Run 2 and YR18 scenarios up to 5%, and largest at high m_{a_1}

Conclusion:

- Exotic decays of the Higgs boson to a pair of light pseudoscalars represent an interesting opportunity to discover new physics
- > Large number of h(125) o aa searches, exploiting exciting physics potential of the LHC, have been done
- No significant excess observed
- Searches interpreted in the context of 2HDM+S models
- Projections of recent searches for integrated luminosities of up to 3000 fb⁻¹, achievable at the High-Luminosity LHC, show foreseen improvement on sensitivity

New results with full Run II dataset also on the way and exciting perspectives for HL-LHC

Thank you!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Sandra Consuegra Rodríguez (DESY)

© 0000-0002-1383-1837

CMS, Higgs Group

sandra.consuegra.rodriguez@desy.de

+49-40-8998-1758

0000-0002-1383-1837

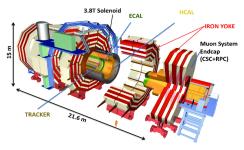
Backup

> Additional material

HL-LHC projections:

[CMS-PAS-FTR-18-035]

Sources of systematic uncertainties for which limiting values are applied in the "YR18 systematic uncertainties" scenario


Source	Component	Run 2 unc.	Projection minimum unc
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25-1%
Hadronic τ ID		6%	Same as Run 2
Jet energy scale	Absolute	0.5%	0.1-0.2%
	Relative	0.1–3%	0.1-0.5%
	Pileup	0–2%	Same as Run 2
	Method and sample	0.5–5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy resolution	,	Varies with $p_{\rm T}$ and η	Half of Run 2
$\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ scale		Varies with analysis selection	Half of Run 2
b-tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with p_T and η	Same as Run 2
	b-/c-jets (stat.)	Varies with $p_{\rm T}$ and η	No limit
	light mis-tag (stat.)	Varies with $p_{\rm T}$ and η	No limit
Integrated luminosity		2.5%	1%
Reducible bkg. (h $ ightarrow$ aa $ ightarrow$ 2 μ 2 $ au$)		20–40%	4–8%

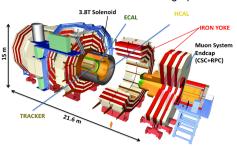
CMS HL-LHC Upgrades

> CMS detector will be substantially upgraded → fully exploit physics potential offered by increase in luminosity at HL-LHC

- > Trigger/HLT/DAQ
 - Increase of L1 rate
 - Reduce HLT rate

- > Muon system
 - Upgrade of cathode strip chambers (CSC), resistive plate chambers (RPC) and drift tubes (DT) electronics
 - Extend geometrical coverage up to $|\eta| = 2.8$ with improved RPC and gas electron multiplier (GEM) technologies
- high PU mitigation with addition of a new timing detector for minimum ionizing particles (MTD) → capability for 4-dimensional reconstruction of interaction vertices

CMS HL-LHC Upgrades


> Tracker

Entire pixel and strip tracker detector replaced to:

- Reduce material budget in the tracking volume
- Improve radiation hardness
- Extend geometrical coverage → efficient tracking up to |η| = 4

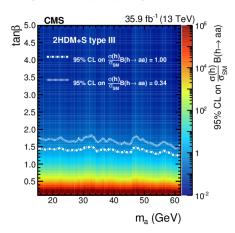
> Endcap calorimeters:

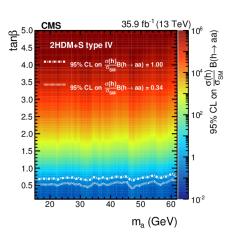
- Upgrade of front-end electronics → exploit information from single crystals at L1 trigger level
- \bullet 160 MHz sampling \rightarrow high precision timing capability for photons
- New combined sampling calorimeter (HGCal) → highly-segmented spatial information and high-precision timing information

Motivation:

Categorizing 2HDM+S Models:

Model	2HDM I	2HDM II	2HDM III	2HDM IV
u	Φ_2	Φ_2	Φ_2	Φ_2
d	Φ_2	Φ_1	Φ_2	Φ_1
e	Φ_2	Φ_1	Φ_1	Φ_2

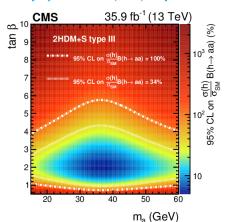

[Phys.Rev. D90 (2014) no.7, 075004]

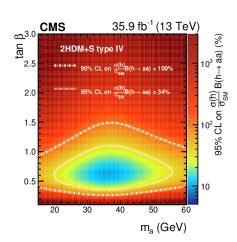

> Branching ratios only independent of $tan\beta$ for Type-I

Observed limits on $B(h \to a_1 a_1)$ in the plane of $(m_{a_1}, tan\beta)$ for 2HDM+S models

 $h \to a_1 a_1 \to 2\mu 2\tau$

[JHEP 1811 (2018) 018]

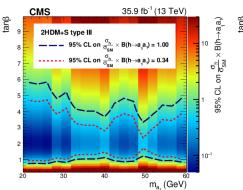


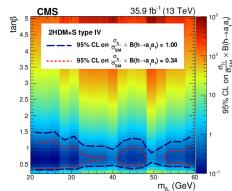


Observed limits on $B(h \to a_1 a_1)$ in the plane of $(m_{a_1}, tan\beta)$ for 2HDM+S models

 $h \rightarrow a_1 a_1 \rightarrow 2b2\tau$

[Phys.Lett. B785 (2018) 462]





Observed limits on $B(h \to a_1 a_1)$ in the plane of $(m_{a_1}, tan\beta)$ for 2HDM+S models

 $h \rightarrow a_1 a_1 \rightarrow 2\mu 2b$

[Phys.Lett. B795 (2019)]

