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Improved results on beam lifetime prediction

» New prediction tests for ICALEPCS.
Focus on time-series-based beam
lifetime prediction restricted to a
blind scenario - the input given to
the prediction model consists only of
context variable readbacks, i.e.
omitting previous beam lifetime
measurements.

» New variables, models (RFF) and
preprocessing techniques have led
to an improvement of the results in
comparison to our previous report at
the AMALEA meeting in May.
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Improved results on beam lifetime prediction: Measurement

» Beam lifetime: defined via the current decay rate

» EPICS Variable can’t be used - very delayed

» First approach: exact calculation from measurements - unstable due to
measurement errors
1 _ ln(It) — ln(ItO)
T t —to
» Final approach: piecewise linear regression with & previous measurements
(experiments with & = 20)
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Improved results on beam Iifetim

» Gap and shift of insertion devices (elliptical) undulators affecting the
dynamic aperture (21 readback variables).

» Power supply currents into quadrupoles define the linear optics (58
readback variables), into sextupoles define non linear behavior (7 variables).

» Offsets to power supplies for quadrupoles define the feed forward
compensations (38 variables).

» Collisions with rest gas particles, vacuums pressure measured by getter
pump current (12 variables).

» Local beam loss fractions, monitored by counters close by (49 variables).
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Improved results on beam lifetime prediction: Fe
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Improved results on beam lifetime predictio

» Data from 2019-07-01 19:00:00 until 2019-07-16 19:00:00, restricted to
top-up and multibunch.
» 80% (31631 samples) is used for training and 20% for test (7908 samples).

» Tests both with random and chronological split.

» Baselines:

» Test set average.

» Persistence: previous target measurement.
» Moving persistence: moving average of the last 5 target measurements.

Test set ‘ Algorithm ‘ RMSE n
| Avg. | Pers. [ Mov. pers. | Model | Pers. | Mov. pers. [ Model
ExtraTrees 0.068175 + 0.000038 0.885322 + 0.000128
Random 20% | SVR-RFF 0.201319 | 0.099248 | 0.091464 0.077432 + 0.000216 | 0.756961 | 0.79359 0.852064 + 0.000825
DNN 0.069457 + 0.000342 0.880964 + 0.001177
ExtraTrees 0.194755 + 0.000952 0.291586 + 0.006932
Last 20% SVR-RFF 0.231393 | 0.095732 | 0.078776 0.121407 + 0.003349 | 0.828836 | 0.884099 0.724506 + 0.015291
DNN 0.125046 + 0.005757 0.707345 + 0.027032
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Improved results on beam lifetime prediction: SVR-RFF and DNN with

chronological split
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Self-optimization (RLControl): (Deep) Reinfo

» Deep Deterministic

Policy Gradient %_p H_F
(Lllllcrap et al. (201 6)) Environment Environment
Actor-critic p— B
Reinforcement Learning Gt 4 (e, o
algorithm for continuous : ﬁ-@ | [T i<
environments. E : T

» Off-policy data and the
Bellman equation used
to learn the Q-function.

» (Q-function used to learn
the policy.

» Approximated with NNs. Figure: Sutton and Barto (2018)

Actions
Actions

States /Stimuli
States/Stimuli

Cortex (multiple areas)

Dorsal striatum
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Optimization of booster current: Cas

» Observation: after long interruptions of the
machine operation, the booster current
tends to be low. As for today, manual
parameter tuning is required.

» State variables:

» High (radio) frequency - master clock.

» Voltage in LINAC.

» Klystron current diagnostic measurements -
only in last tests.

» Action variable: time phase in LINAC.
Observations show that this parameter does
not affect the injection efficiency.

» Reward: (normalized) booster current per
bunch.
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Self-optimization (RLControl): Case description

Agent
RLControl .
Action
LINAC time phase
State
klystron diagnostics
master clock Reward
booster current
per bunch
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Self-optimization (RLControl): Automatic scheduling

State
klystron diagnostics

master clock

Agent
RLControl

Reward
booster current
per bunch

Environment

L. Vera Ramirez, HZB, AMALEA Meeting, 09/09/2019

BESSY Il

Action
LINAC time phase
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Optimization of booster current: Test during user operation

Long test during user time with automatic exploration schedule (09/07/19).
Pre-training with 30 days of historical data. Pure exploration is scheduled to take
place only in the meantime between injections during the first hour, in order to
avoid disturbing user operation. Optimization is activated always shortly before
each injection. The agent runs successfully during the next 8.5 hours.
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Optimization of injection efficiency:

» Injection efficiency affected by temperature — needs manual tuning.
» State variables:
» Number of bunches generated by the LINAC (1, 3 or 5)
» Injection angle mismatch, measured by the horizontal and vertical beam position
in the transfer line.
» Current measured during the booster acceleration phase.
» Measured loss rate after extraction from the booster.
» Action variable: Deflection angle into the storage ring, generated by the
274 ring septum sheet.
» Reward: last injection efficiency, measured as fraction of current increase
generated in the storage ring by the charge accelerated in the booster.

L. Vera Ramirez, HZB, AMALEA Meeting, 09/09/2019
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Self-optimization (RLControl): Case description

Agent
RLControl .
Action
deflection angle
State
booster current
loss rate Reward
injection
efficiency
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Optimization of injection efficiency: Preliminary tests

Short test (08/07/19). Demonstration with historical data presented some
problems, so the agent had to learn from scratch. The agent performed well
during the first phase (only ca. 200 steps) and apparently found stable actions with
good efficiency. After booster current was increased (ca 21:45) the optimization
presented some pathological behaviors.

iy
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Optimization of injection efficiency:

» Observation: the actor network gets stuck in local minima, producing constant
(extreme) actions.

» Solution 1: accurate normalization - action boundaries that have been visited
during the pretraining period.

» Solution 2: irregularization term in the actor loss to avoid /azy policies:

T5(16) = Eqnps [QF (5. 10(s)) — Al oo

» Both solutions avoid constant actions during pretraining - it has to be tested
whether it avoids the pathological behaviors observed during the experiments.

» Alternative: different approach to pretraining (e.g. Zhang and Ma (2018)).
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Further development ‘ ‘

» OCELOT surrogate models (Agapov et al. (2014)) for the training of
deep-RL agents, complementing or replacing the pretraining with historical
data. Some tests with toy-examples (emittance, orbit-correction...) in small
lattices have been already carried out - the major challenge is the export of a
RL-agent trained with the virtual BESSY-II-lattice to the real accelerator.

» We are also investigating the possibility of using Symplectic Networks
(Mattheakis et al., 2019) for tracking in the context of a student’s thesis.

» Classification approach for prediction.
» Surrogate models.

» Bluesky integration in RLControl.

» User interfaces

L. Vera Ramirez, HZB, AMALEA Meeting, 09/09/2019
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Backup: Supervised learning algo

» Ensemble methods: Random Forests, Extremely
Randomized Trees... (Breiman (2001), Geurts et al.
(2006)). For regression, MSE as loss — variance as
impurity measure. Self-explaining: allow individual
analysis of each variable’s behavior.

» Support Vector Regression Smola (1998) with
Random Fourier Features (Rahimi and Recht
(2008)). SVR extends traditional SVM (for
classification) via Vapnik’s e-insensitive loss function
(Vapnik (1995))

» Neural Networks (e.g. see Rojas (1996)). (Deep)
Feed-forward NNs for regression (i.e. MSE as loss
function).

Figs. from https://dsc-spidal.github.io/harp/docs/examples/rf/, Smola and Schélkopf (2003), Rojas (1996).
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Backup: Preprocessing and hyperparameter optimization

» Data preprocessing:
» Outlier detection with Isolation Forest (Liu et al. (2008)) with contamination 0.02.
» [—1,1] linear normalization.
» PCA of the input variables (with 185 components).

» Hyperparameter optimization: grid-search with 5-folded cross validation.

Split Algorithm | Grid-search CV |

| Chosen hyperparameter configuration | R* Score |
ExtraTreos (boots_trap, True), (max_depth, None), (max_features, None), 0.888633 - 0.003072
Random Eg;ﬂ?(fﬂn;sgrfég)oo()epochs 50), (gamma, *1/n_atts), (loss, mse), (mode
SVR-RFF rff), (n_.components, 5000), (optimizer, adagrad) 0.860787 + 0.002748
(activation, relu), (batch_size, *32), (dropout_rate, 0.1), (epochs, *20),
- (hidden_layers, 200+200+100+50+25+12),(intermediate_dropouts, | 0.883938 + 0.003867
first), (loss, mse), (optimizer, adagrad)
(activation, *tanh), (batch_size, *32), (dropout_rate, 0.05), (epochs, *20),
Chronological (hidden_layers, *200+200), (intermediate_dropouts, all), (loss, mse), | -0.459200 + 1.653572
(optimizer, adagrad)
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Backup: (Deep) Reinforcement Learning

» Bellman equation with a deterministic target policy uq:
Q" (st,ar) = Eg ok [r(st,ar) + 7Q" (st41, 1(st))]

» Critic update (parametrized approximation @) through SGD with loss:

L(¢) = Estwpﬁ,at,rt,st_»,_lNE [<Q¢>(St, at) — (T't + ’YQ({)(St—l-h Mg(&)))?

» Actor update - (off-policy) Deterministic Policy Gradient Theorem ((Silver
et al., 2014)): for a performance objective J3(1g) = Ej. 5 [Q" (s, uo(s))],

Vods(ko) = B ps [Voro(s)VaQ" (s,a)| ,_ . ]
» Implementation tricks: delayed target networks (Q & 1g), replay buffer.
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Optimization of injection efficie

» Neural networks: in both cases, relu used as inner activation function and
adam as optimizer (Ir = 0.001).

» Critic network: five hidden layers (25+50+25+10+5 neurons) and concatenates
actions at the first hidden layer. Linear activation at the output layer.

» Actor network: three hidden layers (25+10+5 neurons), all of them with layer
normalization (Ba et al. (2016)). tanh used as activation for the output layer.

» In the injection efficiency case, the number of neurons is doubled.

» Data preprocessing: [—1, 1] linear normalization, historical data downsampled
to 60 seconds.

» Parameter Space Noise: § = 0.01.

» Training parameters: v = 0.2, pretraining with 10000 steps (2000 before actor
training), warm-up with 32 steps, target model update rate = 0.1.

» Brute-force synchronization: update every 2 seconds through EPICS.
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