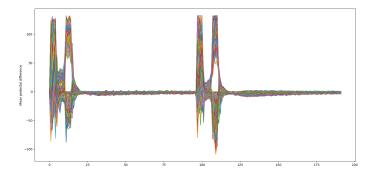
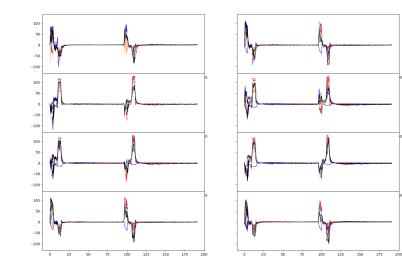
PXD Response to Gated Mode Belle II PXD Workshop, 2019

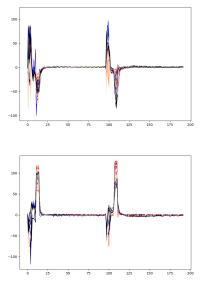
Robert Karl ¹


¹Deutsches Elektronen-Synchrotron (DESY)

September 24, 2019


Display of 2 Gated Modes for the First 256 of 1024 Drain Lines H1011 with clear on 15 V and Common Mode

- Drain lines continuously counted starting at 0: 1st DCD 0-255, 2st DCD 256-511, 3rd DCD 512-767, 4th DCD 768 -1023
- Dead drain lines: 11th to 16th drain line of each DCD: 10...15, 266...271, 522...527, 778...783

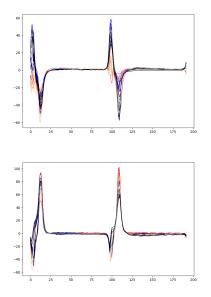

DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019

Distribute the Drain Lines in 8 Figures Every 8th Drain Line in One Plot

DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019

GM Response Function

Description of the GM response:


- When there is no effect from GM
- Prediction of the actual GM response

Treated as a time-signal:

- \blacktriangleright Very noisy signal I(t)
- Split signal into:
 - filtered signal + noise

$$\mathbf{I}(t) = S(t) + N(t)$$

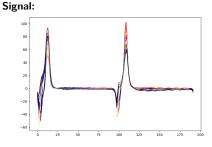
Getting the filtered Signal with a Software Low-Pass Filter

Switching to FFT
$$\mathcal{F}$$
:

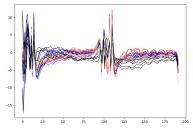
$$\mathcal{F}[\mathbf{I}](\omega) = \underbrace{f(\omega) \cdot \mathcal{F}[\mathbf{I}](\omega)}_{\mathcal{F}[S](\omega)} + \underbrace{(1 - f(\omega)) \cdot \mathcal{F}[\mathbf{I}](\omega)}_{\mathcal{F}[N](\omega)}$$

Applying the Low-Pass Filter:

$$f(\omega) = \frac{1}{1 + i \cdot \frac{\omega}{\omega_0}}$$
$$\omega_0 = 0.25 \cdot \omega_{\max}$$


Retrieve filtered Signal and Noise:

$$S(t) = \mathcal{F}^{-1}[\mathcal{F}[S]](t)$$


$$N(t) = \mathcal{F}^{-1}[\mathcal{F}[N]](t)$$

Filtered Signal shown on the right

Describing the filtered Signal with 2×2 Cauchy distribution

Fit residuals:

Splitting according to the 2 GMs:

$$S(t) \rightarrow \begin{cases} S_1 & 0 \leq t < 0.25 \cdot t_{\max} \\ S_2 & 0.25 \cdot t_{\max} \leq t < 0.75 \cdot t_{\max} \\ S_{\text{rest}} & \text{else} \end{cases}$$

Using a Cauchy distribution

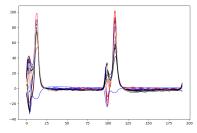
$$\mathcal{C}\left(A,t,t_{0},\Delta t\right)=\frac{A}{1+\left(\frac{t-t_{0}}{\Delta t}\right)^{2}}$$

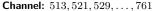
• Each $S_i(t)$ fitted with 2 distributions:

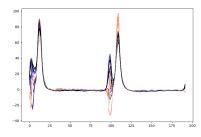
$$S_i(t) = \mathcal{C} (A_1, t, t_1, \Delta t_1) + \mathcal{C} (A_2, t, t_2, \Delta t_2)$$

- Sensitivity to initial fit values
 - If initial values too far off → Fit fails
 - ⇒ Provides good results but not very robust

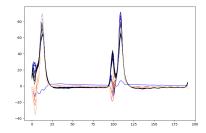
DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019

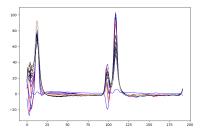

Main GM Response Function


The main GM response is in good agreement with two Cauchy functions


- Results shown for the first DCD of H1011
 - The remaining DCD are also in good agreement with two Cauchy functions
 - An identical behavior if the drain lines are shifted by -2 mod 8 for each DCD
 - e.g. comparing the 3rd drain line of the 1st DCD with the 1st of the 2nd DCD and so forth
- A similar behavior is also achieved for H1021

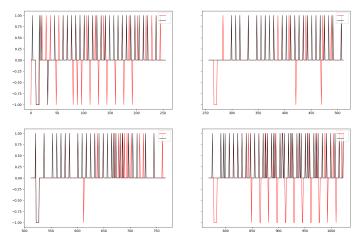
Origin Same-Sign Peaks


Channel: 5, 13, 21, ..., 253



Channel: 259, 267, 275, ..., 507

Channel: 775, 783, 791, ..., 1023

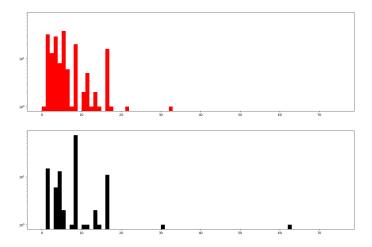


Origin of the Same-Sign Peaks

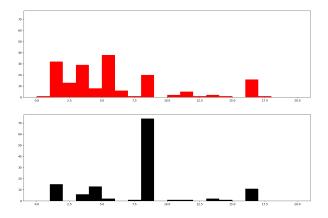
There are 2 effects:

- 1. The Fit cannot find a good resonance \rightarrow artificial same-sign peaks
 - There is no clear resonance in the channel
 - No clear resonance at the first line
- 2. There are actual tow resonances with Same-Sign Peaks
 - Why does this appear?
 - At which channels does this appear?

Channel with Same-Sign Peaks

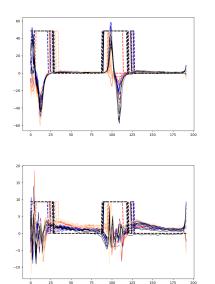


Red peaks for first gated mode, black peaks for second gated mode


 \rightarrow +1: both peaks positive, -1 both peaks negative

DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019

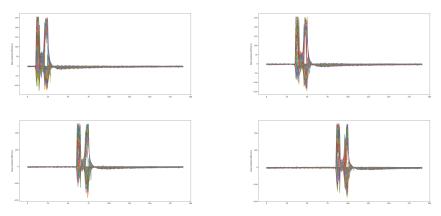
Distance to Neighboring Channels with Same-Sign Peaks


Distance to Neighboring Channels with Same-Sign Peaks (Detail)

 \blacktriangleright In principle: every 8th channel \rightarrow every 2nd column in every 4th row

Further studies with different GM start positions

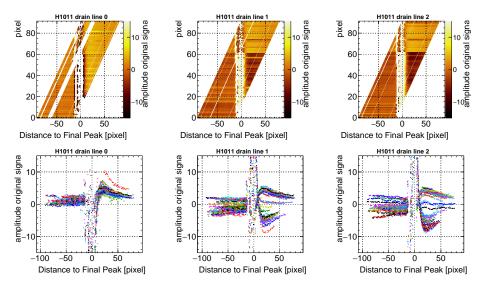
Post-Gated Mode Response

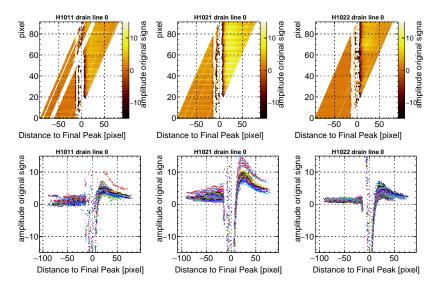


- Behavior after the gate mode
 - How long are the effects visible?
 - Are these effects predictable?
- Occasional 'bump' after signal
 - Disentangle temporal from spacial effects
 - 'Individual' description for each pixel

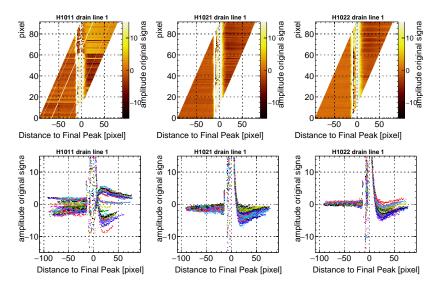
GM sweep:

- Measurements with different GM start positions
- Extraction of the signal description of the individual pixel


Gated Mode Position


- ▶ 192 GM measurements shifted by one line
- \blacktriangleright Problems in the measurements after 95th shift \rightarrow use only the first 95 for the start
- Try to separate spacial from temporal effects

DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019


Distance to GM Resonance (H1011)

Distance to GM Resonance (Drain Line 0)

Distance to GM Resonance (Drain Line 1)

Prediction of Post-Gated Mode Response

The Good News:

- \blacktriangleright A clear pattern is visible \rightarrow in principle, it is deterministic, no chaotic fluctuations
- \blacktriangleright The pattern is generated via multiple measurements \rightarrow The pattern reproducible
- \Rightarrow It is predictable

The Challenge:

- Large variety of patterns \rightarrow In the worst chase, each pixel has its own pattern
- Requirement of some time to disentangle

Outlook

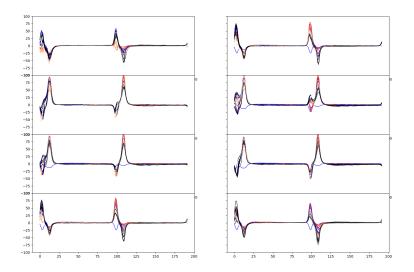
Analysis:

Finding the post-gated mode response function for the individual pixel

- Applying the low-pas filter on the time signal of each pixel
- Goal: 'common' function with 'individual' parameters
- Studying the 'common' pixel behavior:
 - Which pixel has the same post-gated mode response patter
 - Origin of same-signed peak structure

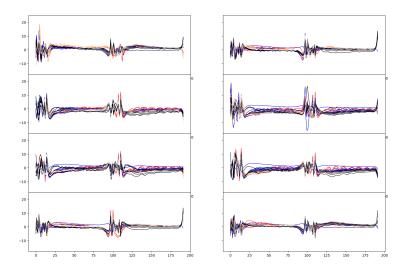
Measurement:

- Repeat the GM sweep with earlier stating and later ending point of the GM position
- Different length of the GM
- Continuous GM operation

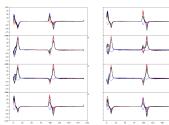

> The main response during gated mode can be well described by 2 Cauchy functions

The post-gated mode response can be predicted in the future

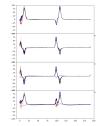
Pattern of 'common' behavior quite complex


Backup Slides

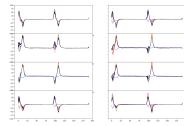
Complete Actual Signal


DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019

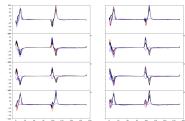
Complete Residuals with Peakfinder

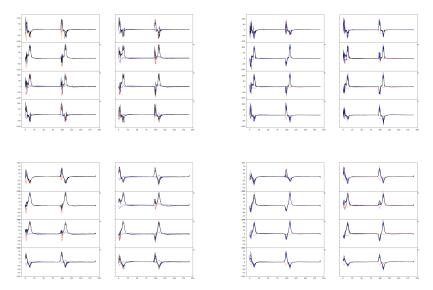

DESY. | PXD Response to Gated Mode | Robert Karl , September 24, 2019

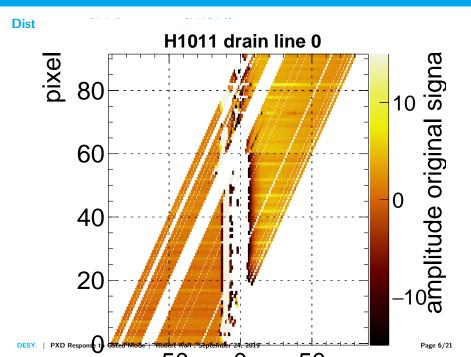
H1011 DCD Comparison

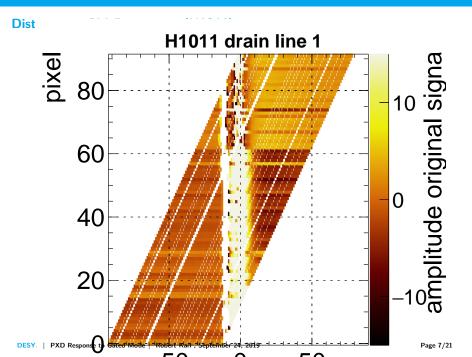

channel 0 to 255

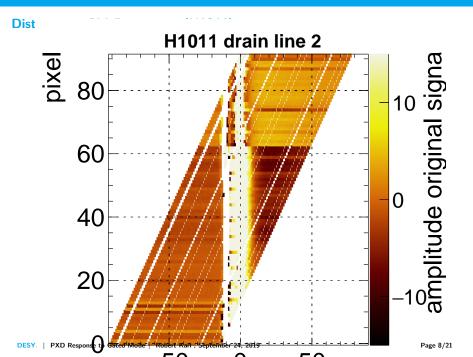
channel 256 to 511

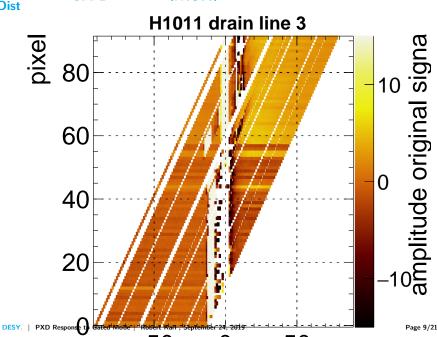


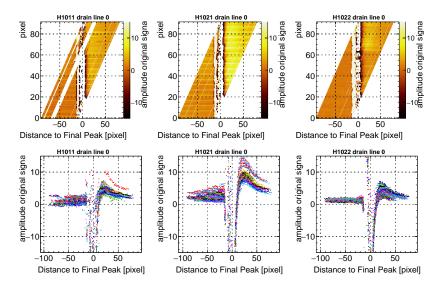

channel 512 to 767

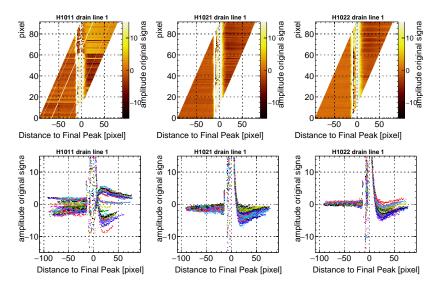


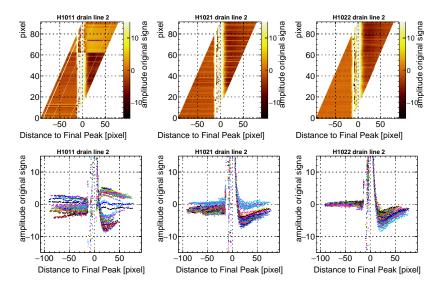

channel 768 to 1023

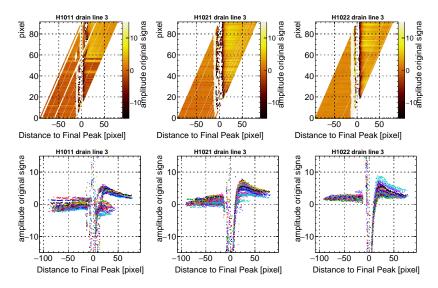


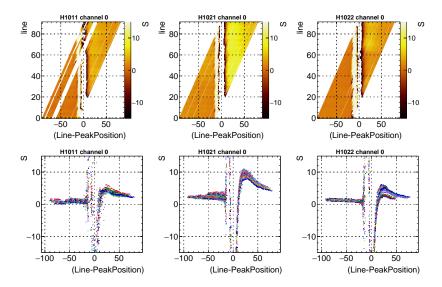

Comparison H1021(*left*) and H1011(*right*)










Dist

