PXD Module Recovery

Simon Reiter¹, Michael Ritzert²

¹Justus Liebig University, Giessen ²Heidelberg University, Heidelberg

PXD Workshop at DESY, September 23/24, 2019

As-is and Boundary Conditions

Goals of this discussion

- simplify recovery of a small number of failed modules
- ideally by global shifter
- define the recovery procedure
- define our requests for the changes to the HV Control system

As-is and Boundary Conditions

Definition of recovery process

Recovery

 $PEAK \rightarrow ERROR \rightarrow PEAK$

Allowed transition

The HV states are well defined and not all transitions are valid

Most important for the *recovery* procedure is the PEAK state, where we are only allowed to go to TRIP and back to PEAK. ERROR does not allow a transition back to PEAK

PFAK ⇔ TRIP

PS state diagram

- No detector needs the state
- Intermediate state is defined
- ERROR state is introduced

- ALL channels are turned off
 Allows normal beam injection
 STANBDY: Voltages for Normal injection
 - Allows normal beam injection
- PEAK : Voltage for physics run
- Allows continuous beam injection
 Intermediate state: automatically shift
 - TURNINGON: OFF => STANDBY
- RAMPINGUP: STANDBY => PEAK
 RAMPINGDOWN: PEAK => STANDBY
- TRUNINGOFF: => OFF
 Error state:
- citor state.
- TRIP: automatic recover by detector
 ERROR: unrecoverable problems
- ERROR: unrecoverable problems

PXD Module Recovery

Error states for a PXD module

ERROR state

In the current version of the DHH/PS Sequence the following scenarios can cause an ERROR state for a single module:

- Interlock triggered
- OVP triggered
- Current mismatch

UNKOWN state

In case the IOC lost connection or crashed, this will result in UNKNOWN state to report different behavior. This should be handled as ERROR on the top PXD level.

TRIP state

The TRIP state is not used.

The TRIP state

Basic idea:

Un-follow the failed modules and recover them.

We cannot go to ERROR in the global state, since there is no direct way back to PEAK!

Proposal of the global PXD TRIP state

PXD can define its own TRIP state by internal definition?

TRIP 1-2 module go into an ERROR state

⇒ Belle 2 shifter presses the *RECOVER* button!

ERROR Multiple modules reach ERROR

⇒ PXD expert should look into it!

→ Both states inhibit the continuous and normal injection!

5/9

Module recovery for PXD

Since just ramping is not enough for PXD:

- What does it mean to recover a PXD module? (TRIP state should not force a run stop so far)
- What is necessary?
 - Ramping to STANDBY and PEAK?
 - New pedestals?
 - Verify voltages and currents?
- How to handle a "stuck" PS sequence due to current limit during ramping? Timeout?

Recovery proposal

Recover from TRIP:

The module stays in ERROR until RECOVER is pressed.

Things to be done on module side:

- Bring module to OFF and reset OVP if necessary.
- Ramp to STANDBY without pedestals from configDB
- Upload latest pedestals during ramping to PEAK (Could be provided by the CalibrationIOC)
- Upload STANDBY pedestals after reaching PEAK (All pixels masked for DAQ test runs)

Recovery proposal

Recover from TRIP:

The module stays in ERROR until RECOVER is pressed.

Things to be done on DAQ side:

- Ohange the DHP mask until fully recovered
- On not stop the triggers for this DHE (The full DHE must not be masked! Otherwise the order within a single DHC changes and the occupancy calculation breaks.)

Requested Changes

Separate injection permit from reported HV state

- report state for injection
- report state for DAQ operation

How to handle excluded modules?