

Fast(er) Emergency Shutdown

Michael Ritzert michael.ritzert@ziti.uni-heidelberg.de PXD Workshop Hamburg 23.09.2019

Introduction

- Objective: Improve shutdown time on beam-loss conditions.
- Current situation:
 - All interlocks are received via the VLHI system, which provides only a slow signal (up to 8 ms response time of the output module).
 - On power-off, the charge in the module is only drained parasitically.
- Two (mostly) independent subprojects identified:
 - Add an additional interlock input directly from the DCU.
 - \Rightarrow Start the shutdown procedure earlier.
 - Actively short the power supply outputs.
 - \Rightarrow Speed up the shutdown.
- Both subprojects require modifications to the power supply hardware, but in different areas.
 ⇒ Implement at the same time?
- With both projects implemented, we still will not completely power off before the beam dump is complete.

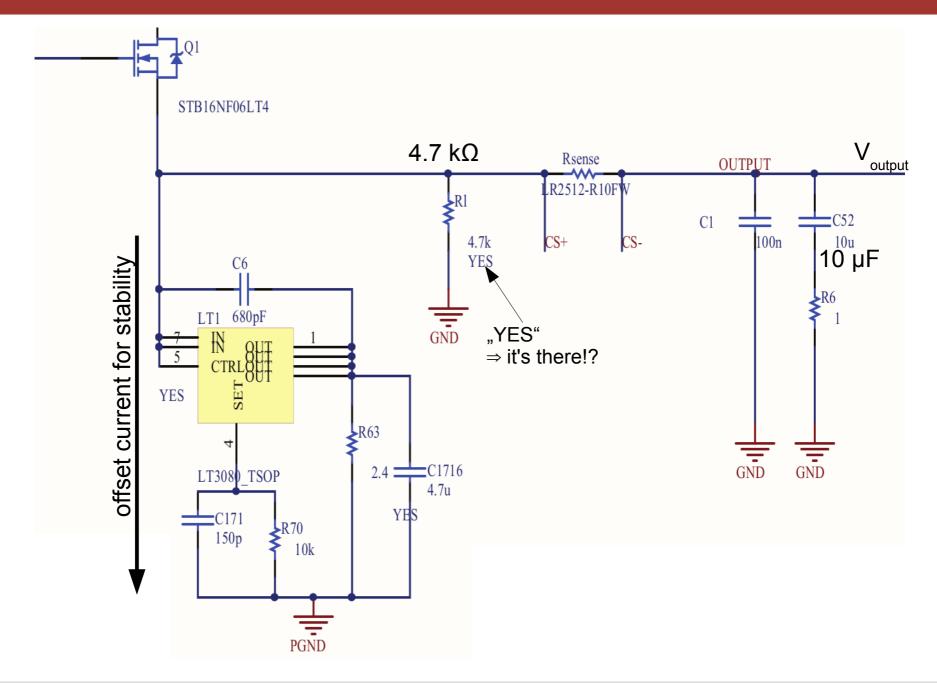
Direct Interlock from the DCU

The Plan

- Add an additional direct interlock line from DCU to PXD PS.
 - A suitable signal is already available on top of Belle.
 - It's a single NIM signal, so my proposal is to receive it once and then distribute internally (between Backplanes).
- Modify the interlock cabling to connect this as the second interlock of the PS unit.
- Add circuitry to disable the interlock to the Backplane.
 - The "normal" interlock can be controlled via the VLHI.
 - The new diamond interlock also needs some sort of control.
 - Proposal: Modify the PS backplane to make the interlock switchable from the Crate Controller:
 - We are lucky: The CC design was for four PS units per backplane, we have only three.

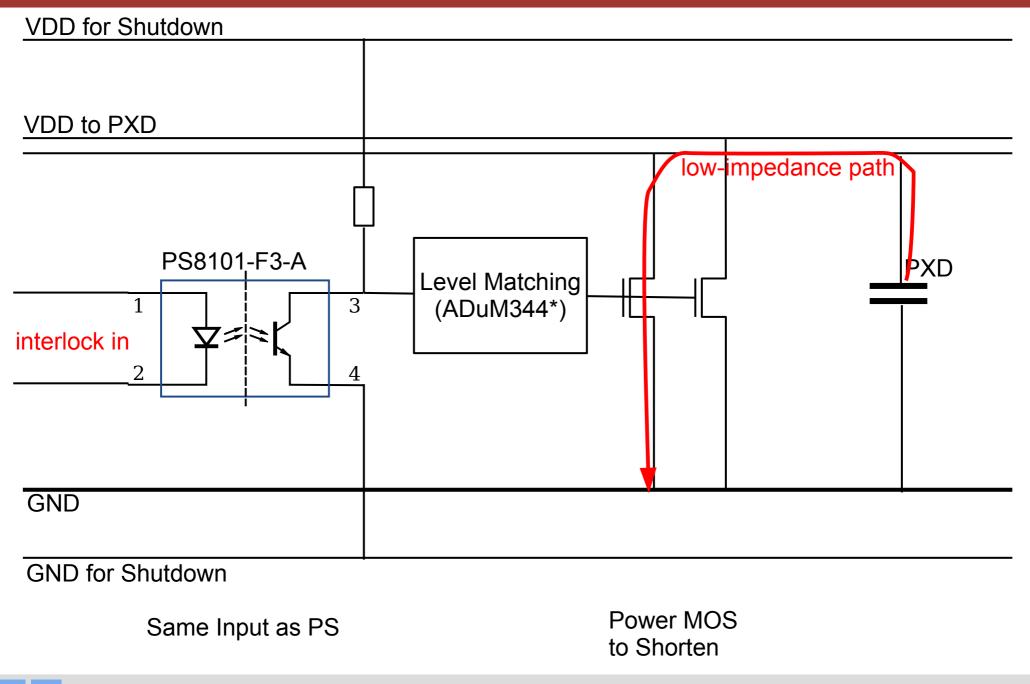
 \Rightarrow There is one more control bit available. We should be able to use that.

⇒ We need only modify the (hopefully cheap) backplane, not the more complex CC.


Active Power-Off

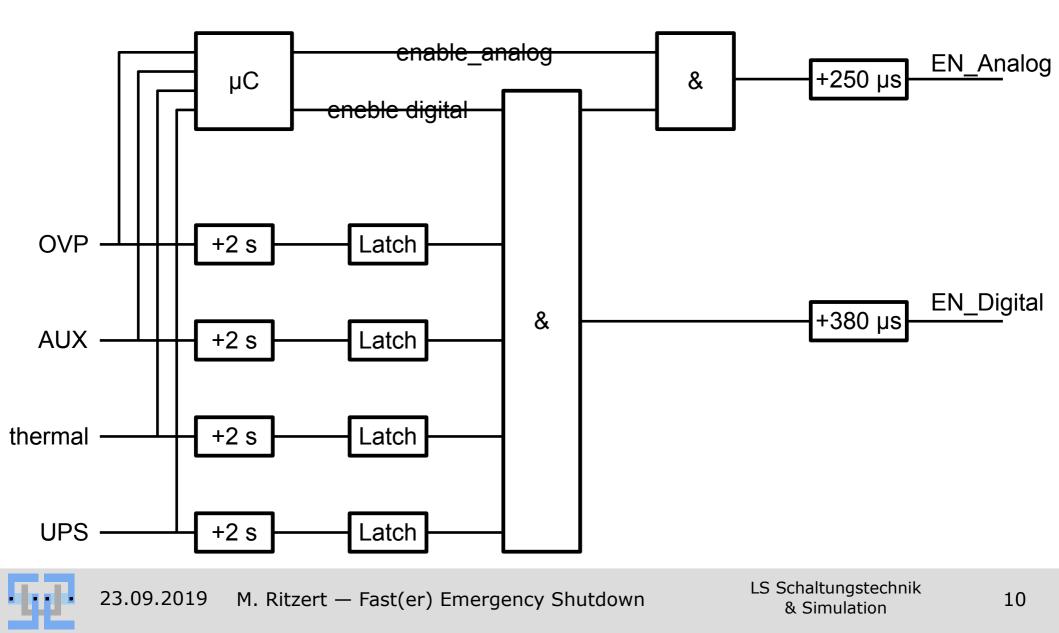
Where We Are Coming From

Philipp's and Markus' measurements of the shutdown timing: Most voltages take at least several 100µs to completely discharge. Note: T=0s is **not** the time the interlock triggers. $1 \,\mathrm{ms}$ HV takes "forever" 0.000 0.005 0.010 time / sec



Unipolar Output Stage

The Basic Idea (First Test PCB)


23.09.2019 M. Ritzert — Fast(er) Emergency Shutdown

LMU PS Design

- The PS is a modular design with
 - Back PCB
 - Front PCB
 - MCU card
 - Regulator cards (3 different kinds)
 - DC/DC card
 - OVP card
- All cards can be replaced independently.
- The interlock connectors are on the back PCB.
- Interlock handling is on the MCU card.
- Connections between all cards are on the Front PCB.
 - Also the output connectors.
 - \Rightarrow This is **the** central place.


Delays within the PS Unit

- Fixed delays to ensure "analog off first".
- Purpose of the 2 second(!) delay at the input unclear.

The Plan

- Remove all fixed delays inside the PS unit.
 - Just remove the parts and shorten input and output pads.
 - All on the MCU card.
- On the Front PCB we have
 - All output signals.
 - GND/5V for all floating power domains.
 - The "enable" signals, but not the interlock signals.
 - quite a bit of space
 - ⇒ Place the fast shutdown circuitry here.

Are There Other Options?

- The PS is a convenient place for the circuitry.
- But it's not the only one: There's also the Dockboxes
 - We can access all the voltages.
 - We can bring in a control signal.
 - The resistance to the modules is lower.
 - Problem: There's no fixed supply for each floating power domain.
- Shorting the outputs is an obvious improvement.
- Are there more ideas?

Next Steps

Next Steps for DCU Interlock

- Design the interlock receiver for the PS backplane.
- Verify the availability of the interlock signal on site (during B2GM).
 Plan the cable routing for the last stretch to the PS rack.
- Understand the current interlock distribution cabling @ KEK.
- Verify availability of parts required for new batch of the PS Backplanes.

Next Steps for Fast Shutdown

- Finish the layout of the test PCB.
- Modify one PS unit to remove all hardwired delays.
 - At this time check if it's suitable to access the interlock signal.

Side remark: We always talk about "Fast Emergency Shutdown". We do get that when we use the enable signals. With the interlock signal, its a "Fast Interlock Shutdown". ⇒ We need to decide what we actually want.

- Re-do the shutdown measurements with the modified PS and the test board.
 - Possible problems might come from initially very high currents when shorting a charged capacitor.
 - Measure discharge time.
 - Observe dhp-io.
 - \Rightarrow Hopefully confirmation that the idea is good.
 - \Rightarrow Go / No Go decision.
- Verify availability of parts required for new batch of the Front PCB.

Thank you!

RC (C only on Kapton)

net	R	С	R×C
clear-off	6 Ω	2.2 μF	13.2 µs
clear-on	4 Ω	2.2 μF	8.8 µs
dcd-amplow	2 Ω	22 μF	44 µs
dcd-avdd	1Ω	66 μF	66 µs
dcd-dvdd	2 Ω	22 μF	44 µs
dcd-refin	11 Ω	22 μF	242 μs
dhp-core	3 Ω	22 μF	66 µs
dhp-io	5 Ω	22 μF	110 µs
gate-off	5 Ω	2.2 μF	11 µs
gate-on[123]	17 Ω	2.2 μF	37.4 μs
source	20 Ω	2.2 μF	44 µs
sw-dvdd	61 Ω	2.2 μF	134.2 μs
sw-sub	4 Ω	2.2 μF	8.8 µs

