

Update on Kinematic Fits

C. Sander

Susy Group Meeting - Hamburg - 20th October 09

Some Definitions

- N_{tot} : Total number of fitted events (= 87)
- p_i : kinematic fit probability (mass and momentum balance constraints only)
- p_{cut} : probability cut (definition of convergence) (=0.01)
- $Np_{\text{converged}}$: Number of events with $p > p_{\text{cut}}$
- L_i : combined likelihood $p \times LR$ with $LR = \prod_{i=1}^N \frac{\mathcal{L}_{\text{sig}}(\cos \theta_i^*)}{\mathcal{L}_{\text{sig}}(\cos \theta_i^*) + \mathcal{L}_{\text{bg}}(\cos \theta_i^*)}$
- L_{cut} : Likelihood cut (definition of convergence) (=0.001)
- $NL_{\text{converged}}$: Number of events with $L > L_{\text{cut}}$

Here:

- Signal events (LM5) contain only Ws
- Full combinatorics
- ullet Angular distributions of squarks and charginos for calculation of LR

Discriminators I

Average fit probability:

- Normalized
- Sensitive to singe accidentally good fits

Frational event count:

- Sensitive to number of converged events
- Peaks where most good events

Discriminators II

Total probability of event sample:

Sensitive to number of converged events

Logarithm of total probability:

- Sensitive to number of converged events
- More stable

Discriminators III

Normalized total fit probability:

- Normalized
- Sensitive to singe accidentally good fits

Given N equally distributed variables, Q is also equally distributed:

- Normalized
- Sensitive to singe accidentally good fits

$$Q = P \cdot \sum_{k=0}^{Np_{\text{converged}}-1} \frac{(-\log P)^k}{k!}$$

• Pcut = 0.01 (Q deviates from flat distribution, can be modelled)

Discriminators IV

Total combined likelihood of event sample:

Sensitive to number of converged events

Logarithm of total combined likelihood of event sample:

- Sensitive to number of converged events
- More stable

Discriminators V

Normalized total combined likelihood:

- Normalized
- Sensitive to singe accidentally good fits

Binned likelihood of fit probability:

 Contains information of whole distribution as well as proper normalization

Conclusion

- Many possible choices of discriminator!
- Which one is the best?