hls 4 ml

Machine Learning with FPGAs for Trigger and
Detector Systems

Viadimir Lon¢ar (CERN)

- on behalf of the FastML team
:= fastmachinelearning.org
3 Q.“
N,

PP 13th Terascale Detector Workshop (6-8 April 2021)

https://fastmachinelearning.org

The Big Data of Large Hadron Collider (LHC)

LHC proton beams collide at a frequency of 40 MHz, producing data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

- Very strict latency constraints! O(1us)

How do we process data?

Q’lr 0(
) o)
0'0 Qi‘oxo &(\Q
> v
FIN <
1ns <10 us < 500 ms 10 s

Challenge: strict latency constraints!

L1 trigger hardware

We need fast processing of raw data O(us)

- Not possible to use common hardware, such
as Intel CPUs, nor common operating
systems

Must be flexible and modular to support
reconfiguration and upgrade/maintenance of
modules

- Field-programmable gate arrays (FPGAS)

Detector upgrades for HL-LHC

Event size will have to be 10x larger
We will have to take data at 5x the current rate
With increased beam intensity physics quality degrades, especially with L1 algo gets worse

Flat budget for computing resources — Current data processing paradigms will not be
sustainable! — T T—T—T— 11—

CMS Public
Can deep learning be a way out? 40000~ STt neac 1
P J / o After upgrade
w == = +20% purchasing power evolution
© 30000}]
()]
%
S 20000} Today _
n Current
>
~ Tec

T

10000 f=

1 | 1 1
0017 2019 2021 2023 2025 2027
Year

Bring DL to FPGA for L1 trigger with
high-level synthesis for machine learning

his4dml - A user-friendly tool that enables fast inference on edge devices

- Dedicated optimization for each network - O(ps) inference
- Automatic firmware generation workflow h IS 4 ml
- Commonly FPGAs, but with expanding hardware support

Input: pre-trained models from popular deep learning tools - Keras, TensorFlow,
PyTorch, ONNX

Output: C++/HLS optimized for the target hardware architecture

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/

his4ml pipeline

Model conversion, Xilinx FPGAs, Intel/Altera
Supported DL frameworks: optimization, profiling & FPGAs, Intel x86 CPUs
Keras “F TensorFlow tuning
O PyTorch € ONNX hls 4 ml L. XILINX m

Quantized C++/HLS Hardware

model project

Quantization and pruning VIVADO’; Menbr

techniques:

- QKeras + AutoQ (Keras)
- Brevitas (PyTorch)

fasals

oneAPI Quartus

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas

Features

Supported architectures:
- Deep Neural Networks (DNNs)
- Zero-suppressed weights - arxiv:1804.06913
Quantization
- Binary/Ternary layers (computation without using DSPSs) - arxiv:2003.06308
- Google QKeras integration - arxiv:2006.10159 m
- Convolutional Neural Networks (CNNs) - arxiv:2101.05108
- Graph NNs - GarNet architecture - arxiv:2008.03601

- Recurrent Neural Networks (RNNs)
- PyTorch quantization with Xilinx Brevitas - arxiv:2102.11289
- New hardware platforms

- Intel FPGA - Quartus

- ASICs - Catapult - arxiv:2103.05579

- Intel x86/Xe - oneAPI

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2003.06308
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2103.05579

Efficient implementations of NNs with HLS

Meeting latency constraints

- FPGAs rarely operate at over 500 MHz

- Typically in 200-400 MHz range

- For practical reasons, at L1 trigger we target the frequency of multiple of 40 Mhz
- Usually we have O(10) cycles to complete the entire algorithm!

Algorithm design:

- Exploit parallelism as much as possible (unrolling)
- Remove branching as much as possible
- Store all weights in registers of an FPGA g distinguishing feature!
- Limited by the amount of resources, has heavy impact on model design

Low-latency matrix multiplication on FPGAs

NN inference — matrix multiplication
weights biases

O T

" . Wll
I’l O < W21
— ll .
: [
L Wi 211
; i
I %/ NPz O 0, Wiz Was ’ (WisX iy) + (W23X i5)
5]
O L M3 \ /
W3 O (p([Ol 0)) 03])

LUTs/FFs

DSPs

(WX iq) + (WX i) | +

l(an 1) + (wy X i3)

01
= |0y
03

\Activation
(lookup table)

Est. latency: 3 cycles (multiplication + addition + lookup)
10

Fast convolutional neural networks

Direct implementation of convolution is a bad fit for HLS | for out_c in range(n_filt):

for i in range (height):

o 7 R for j in range(width):

:) . for ¢ in range(n_chan):
Y[U>u7n] = ,B[TL] En ZZZX[’U-F],U-I—]C, C] W[J:ka &) n] _ for fi in range (k_height):

c=1j=1k=1 for fj in range(k width):

elem = input[i+fi, Jj+fj, c]

w = weights[fi, fJ, c, out c]
output[i, J, out c] += elem * w

- Six nested loops, results in long latency

Convolution via matrix multiplication (im2col)

- Build an input matrix and multiply it with weight matrix
- Sequential approach:
- Collect pixels from input image into an internal buffer

Input feature maps

Transformed GEMM

until we can compute one output . = ! : :z :: x
- Accommodate fast and predictable streaming by T . fie |17
eliminating all branches and corner case checks bfua[isg MR ol el e
- Encode all operations into high-level i L B

convolution-specific instructions > arxiv:2101.05108 11

https://arxiv.org/abs/2101.05108

Making the model smaller

Exploiting FPGA hardware is key to achieving performance goals

- Parallelization (reuse): Control the inference latency versus utilization of device’s resources
- Pruning: Remove the connections that play a small role in the final decisions

- Quantization: Reduce the number of bits used to represent numbers ap fixed<width, integer>
. P < -
integer fractional

before pruning after pruning
P reuse = 4 width
mult use 1 multiplier 4 times
pruning ___, P mult] reuse =2
Synapses | mult use 2 multipliers 2 times each
pruning . =] mult
neurons —{ mult] euse = 1
use 4 multipliers 1 time each
—p] mult

Parallelization

Exposed to the user via “reuse factor”

A handle to control resource usage and latency
Can be specified per-layer

Reuse = 1: Fully unroll everything

Fastest, most resource intensive

Reuse > 1: reuse one DSP for several operations

Increases latency, but uses less resources

1e3 his4ml 3-layer pruned, Kintex Ultrascale

1 —=— Reuse Factor = 2 Max DSP

1| Reuse Factor = 4

—=— Reuse Factor =1

== _ReuseFaClor =3 mm mmmmmc e e e e m

—=— Reuse Factor =5
—s— Reuse Factor = 6

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

Pruning / Compression

Pruned (zero-valued) weight removes multiplication
- Key optimization, possible only on FPGAs

Applied during training, where sparsity is gradually introduced to remove the smallest
magnitude weights

- E.g., with Tensorflow model optimization toolkit (TFMOT)

1600 T T T T 70007 T T T T g
HEm Conv0 d W Conv0 1
1400l ™™ Conv 1 hls 4 ml_ B Convi hls 4 ml
Hl Conv2 6000 HER Conv 2 5]
Bl Dense 0 [B Dense0]
1200 B2 Dense 1 - =3 Dense 1 1
3 Output dense 5000{~ = Output dense .
g ? 2 % 2 50% of weights
3 X oo 4 removed
= = 4000F q
S 8001 B k]]
2 £ 3000F .
£ oot] £
=z z]
BF model 2000 BP model J
400} . 3 1
200}] 1000
ob-d 0
-15 -1.0 -0. 0.0 . A d -1.5 -1.0 -0.5 0.0 0.5 1.0 15

Weights Weights

Quantization

14 :) J | | | | | | | | |
QKeras: Library for training quantization-aware L hls 4 ml 10-fold cross-validaton
Keras models - arxiv:2006.10159 ol]
- Simple drop-in replacement of Keras layers I]
. . T e - s SEe sERe SRS sSSs s —
- Heterogenous quantization (per layer) sl I AutoQ
. . . I | uto = 1
- Automatic quantization through > & .
. .. . I 1
Bayesian optimization (AutoQ) S i
. . Q - -
- Numerous quantizers available 948 !
- Fully supported in his4ml [! (& no accuracy
- Special case for binary/ternary 0.7 ploss .
- I with 4 bits
arxiv:2003.06308 : ——
ael ! BN Pruned (50%)]
- I
| | [| | | | | | | |-
T 3 4 6 8 10 12 14 16 AQ/ BF/

AQP BP 15

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2003.06308

Evaluation of model optimization techniques

2415
Wzl

Model architecture (obtained through Bayesian optimization with Keras Tuner and AutoQ):

Street-view house numbers dataset (SVHN) - “A tougher MNIST”
- 32x32x3 images

Block 1: Block 2: Block 3:
Conv (16.(3.3)) Conv (16.(3.3)) Conv (24.(3.3))
+Max Pool (2,2) +Max Pool (2,2) +Max Pool (2,2)
+BN +BN +BN Flatten(96) Dense(42) Dense(b4)

Input: +RelU +ReLU +RelU +BN +BN
32x32x3 : +RelLU +RelLU
Dense(10)

N\

RelU RelLU RelLU RelU RelU

Softmax

16

Model performance

Baseline models

- Full 32-bit precision (BF)

- Full 32-bit precision, pruned (BP)
- 50% sparsity
- Polynomial decay

QKeras models

- Quantized (Q)

- Binary (1-bit)

- Ternary (2-bit)

- Quantized to 3-16 bits
- Pruned (QP)

- 50% sparsity

00

=
o
|

1072

Background Efficiency

1073

s—)
_1,
—_ 2'
3,

4,

5,

6,
7,
— B;
—_O,
Baseline
0.2 0.3

AUC = 99.64%
AUC = 99.58%
AUC = 99.68%
AUC = 99.33%
AUC = 99.67%
AUC = 99.56%
AUC = 99.62%
AUC = 99.79%
AUC = 99.36%
AUC = 99.63%

0.4 0.5

0.6
Signal Efficiency

0.7

1

0.9

Accuracy
o
®

0.7

0.6

AQP BP

0.5 0.6 0.7
Signal Efficiency

10°
— 0, AUC = 99.65%
his 4 ml —— 1, AUC = 99.56%
—— 2, AUC = 99.66%
5 3, AUC = 99.32%
2101 4, AUC = 99.65%
g 5, AUC = 99.52%
'uEJ 6, AUC = 99.63%
e —— 7, AUC = 99.78%
5 — 8, AUC = 99.36%
21072 | — 9,AUC = 99.60%
L4
o
©
o
103 Baseline Pruned
0.8 0.9 (H 0.2 0.3 0.4
¥ T L T T T T T T T T T
hIS 4 m| 10-fold cross-validaton
g =——— == = -
=
. Ful
Bl Pruned (50%) h
L 1 1 1 L 1 1 1 1 1 1 (|
B T 3 4 6 8 10 12 14 16 AQ/ BF/

0.8

hls 4 ml

0.9 1.0

17

Model performance on an FPGA

Using Xilinx Virtex UltraScale+ VU9P series FPGA
- Target device for CMS L1 trigger upgrade
200MHz clock

Table 3: Accuracy, resource consumption and latency for the Baseline Full (BF) and Baseline Pruned (BP) models
quantized to a bit width of 14, the QKERAS (Q) and QKERAS Pruned (QP) models quantized to a bit width of 7 and the
heterogeneously quantized AutoQ (AQ) and AutoQ Pruned (AQP) models. The numbers in parentheses correspond to
the total amount of resources used.

Model Accuracy DSP [%)] LUT [%] FF [%] BRAM [%] Latency [cc] II [cc]
BF 14-bit 0.87 93.23 (6377) 19.36 (228823) 3.40(80278) 3.08 (66.5) 1035 1030
BP 14-bit 0.92 48.85 (3341) 12.27 (145089) 2.77 (65482) 3.08 (66.5) 1035 1030
Q 7-bit 0.93 2.56 (175) 12.77 (150981) 1.51(35628) 3.10(67.0) 1034 1029
QP 7-bit 0.93 2.54 (174) 940 (111152) 1.38(32554) 3.10(67.0) 1035 1030
AQ 0.85 1:05:(72) 4.06 (48027) 0.64 (15242) 1.3:(32:5) 1059 1029
AQP 0.88 1.02 (70) 3.28 (38795) 0.63 (14802) 1.4 (30.5) 1059 1029

More details in our paper!

https://arxiv.org/abs/2101.05108

his4ml for triggering @ 40 MHz

. . . CMS Phase-2 Simulati 14 TeV, 200 PU
New trigger algorithms with hls4ml = =S °
0.9
. © qp Inclusive 1-Jet
- Replace standard cut-based algorithms Ug), - B ki
- Better signal efficiency with NN! A Inckeiveill
0.7 w Inclusive VBF
’ O Inclusive Total (1-Jet OR 2-Jet OR HT OR VBF)
0.6 ———e—— DNN VBF H—bb

24 INPUT FEATURES:
pT, n, and ® of the 3 leading jets; the
total event HT; the di-jet pT, invariant
mass, AR. ET""SS
3 HIDDEN LAYERS (72x72x72)
1 OUTPUT: final discriminant score

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII||IIIIII|III

A

llllllllllllllllllllllllllllllllllllll

0O 20 40 60 80 100 120 140 160 180
Rate (kHz)

-> CMS Phase-2 L1 trigger upgrade TDR

19

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

his4ml for triggering @ 40 MHz

CMS Phase-2 Simulation 14 TeV
New trigger algorithms with his4ml E e 'L'{,(,,;o,];p' :50 G;;,' I B ' Y
- Replace standard cut-based algorithms = s EMTE ; -

- Better signal efficiency with NN! § 100 . EMTF++ ’

- Improve physics objects reconstruction - ; 4
(muons, taus, jets) : :

- 2.5x rate reduction!

¢,8 of track segments in muon stations i i . : .
track segment quality i . B Pl
track segment curvature i f f B oae®T 4

wa i . : :
3 HIDDEN LAYERS (30x25x20) i e | .

“ O 44°07 l £9.9%) l 11 l (O S O it O O N l

1 OUTPUT: muon pT 0 50 100 150 200 250 300 350

PU

[0 CMS Phase-2 L1 trigger upgrade TDR

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

his4ml for triggering @ 40 MHz

Encoder

New trigger algorithms with his4ml

- Replace standard cut-based algorithms
- Better signal efficiency with NN!
- Improve physics objects reconstruction
(muons, taus, jets)
- 2.5x rate reduction!
- Develop new strategies like anomaly detection
with autoencoders for signal-agnostic triggering

?7x18x3x1

Activation

Conv2D

Reshape

AveragePooling2D

BatchNormalization

UpSampling2D

Activation

Conv2D

BatchNormalization

Activation

Activation

activation_3

[0 CMS Phase-2 L1 trigger upgrade TDR
K.Govorkova @ FastML workshop ‘20

21

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf
https://indico.cern.ch/event/924283/contributions/4105192/

his4ml for triggering @ 40 MHz ===

o
©

New trigger algorithms with his4ml

0.96

- Replace standard cut-based algorithms
- Better signal efficiency with NN!
- Improve physics objects reconstruction
(muons, taus, jets)

o
)

1 o0.95

0.94 4

0.93 1

0.92 4

e
N

0.91 4

0.90

Electron identification efficiency

- 2.5x rate reduction!
- Develop new strategies like anomaly detection i ’
with autoencoders for signal-agnostic triggering == Wi Betier
- Custom NNs @ L1 *%s 0.6 0.7 0.8 0.9 1.0
- Calorimeter clusters classification - ren reecton efeney
arxiv:2008:03601 . e EmaiaszE‘v::dm Dense 16| [Goncs 1 o Fpeo
- Charged particles track reconstruction - |‘é‘f£f§ss[;§?1;‘] I’ JQD Q,P Mbu =
arxiv:2012:01563 = g(iomdere Edoecodemel/f'j“ Dense8 4 Sig”rj;c} P(e)

[0 CMS Phase-2 L1 trigger upgrade TDR 22

https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2012.01563
https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

Summary
his4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1us) latency

Currently being extended to multiple hardware architectures and new neural networks
Many applications in science
More information:

- Website: https://hls-fpga-machine-learning.qgithub.io/hls4ml/
- Code: https://github.com/hls-fpga-machine-learning/hls4ml h IS 4 m I
23

- Tutorial; http://cern.ch/ssummers/his4mi-tutorial

https://hls-fpga-machine-learning.github.io/hls4ml/
https://github.com/hls-fpga-machine-learning/hls4ml
http://cern.ch/ssummers/hls4ml-tutorial

