
Machine Learning with FPGAs for Trigger and
Detector Systems

Vladimir Lončar (CERN)

on behalf of the FastML team
fastmachinelearning.org

13th Terascale Detector Workshop (6-8 April 2021)

https://fastmachinelearning.org

The Big Data of Large Hadron Collider (LHC)
LHC proton beams collide at a frequency of 40 MHz, producing data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

- Very strict latency constraints! O(1µs)

2

How do we process data?

Challenge: strict latency constraints!

1 ns ≤ 10 µs ≤ 500 ms 10 s

3

L1 trigger hardware
We need fast processing of raw data O(µs)

- Not possible to use common hardware, such
as Intel CPUs, nor common operating
systems

Must be flexible and modular to support
reconfiguration and upgrade/maintenance of
modules

➔ Field-programmable gate arrays (FPGAs)

4

Detector upgrades for HL-LHC
Event size will have to be 10x larger

We will have to take data at 5x the current rate

With increased beam intensity physics quality degrades, especially with L1 algo gets worse

Flat budget for computing resources ➞ Current data processing paradigms will not be
sustainable!

Can deep learning be a way out?

5

Bring DL to FPGA for L1 trigger with
high-level synthesis for machine learning

hls4ml - A user-friendly tool that enables fast inference on edge devices
- Dedicated optimization for each network - O(µs) inference
- Automatic firmware generation workflow
- Commonly FPGAs, but with expanding hardware support

Input: pre-trained models from popular deep learning tools - Keras, TensorFlow,
PyTorch, ONNX

Output: C++/HLS optimized for the target hardware architecture

6
https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/

Model

Supported DL frameworks:

Quantized
model

Quantization and pruning
techniques:

- QKeras + AutoQ (Keras)
- Brevitas (PyTorch)

hls4ml

Model conversion,
optimization, profiling &
tuning

C++/HLS
project Hardware

Xilinx FPGAs, Intel/Altera
FPGAs, Intel x86 CPUs

hls4ml pipeline

7

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas

Supported architectures:
- Deep Neural Networks (DNNs)

- Zero-suppressed weights - arxiv:1804.06913

- Quantization
- Binary/Ternary layers (computation without using DSPs) - arxiv:2003.06308
- Google QKeras integration - arxiv:2006.10159

- Convolutional Neural Networks (CNNs) - arxiv:2101.05108

- Graph NNs - GarNet architecture - arxiv:2008.03601

- Recurrent Neural Networks (RNNs)
- PyTorch quantization with Xilinx Brevitas - arxiv:2102.11289

- New hardware platforms
- Intel FPGA - Quartus
- ASICs - Catapult - arxiv:2103.05579

- Intel x86/Xe - oneAPI
8

Features

NEW

WIP

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2003.06308
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2103.05579

Efficient implementations of NNs with HLS
Meeting latency constraints

- FPGAs rarely operate at over 500 MHz
- Typically in 200-400 MHz range
- For practical reasons, at L1 trigger we target the frequency of multiple of 40 Mhz

- Usually we have O(10) cycles to complete the entire algorithm!

Algorithm design:

- Exploit parallelism as much as possible (unrolling)
- Remove branching as much as possible
- Store all weights in registers of an FPGA ⬅ distinguishing feature!

- Limited by the amount of resources, has heavy impact on model design

9

Low-latency matrix multiplication on FPGAs
NN inference ➞ matrix multiplication

10

DSPs

LUTs/FFs
Activation

(lookup table)

weights biases

Est. latency: 3 cycles (multiplication + addition + lookup)

Fast convolutional neural networks
Direct implementation of convolution is a bad fit for HLS

- Six nested loops, results in long latency

Convolution via matrix multiplication (im2col)
- Build an input matrix and multiply it with weight matrix
- Sequential approach:

- Collect pixels from input image into an internal buffer
until we can compute one output

- Accommodate fast and predictable streaming by
eliminating all branches and corner case checks

- Encode all operations into high-level
convolution-specific instructions 11

for out_c in range(n_filt):
 for i in range(height):
 for j in range(width):
 for c in range(n_chan):
 for fi in range(k_height):
 for fj in range(k_width):
 elem = input[i+fi, j+fj, c]
 w = weights[fi, fj, c, out_c]
 output[i, j, out_c] += elem * w

➔ arxiv:2101.05108

New

https://arxiv.org/abs/2101.05108

Making the model smaller
Exploiting FPGA hardware is key to achieving performance goals

- Parallelization (reuse): Control the inference latency versus utilization of device’s resources
- Pruning: Remove the connections that play a small role in the final decisions
- Quantization: Reduce the number of bits used to represent numbers

12

width

integer fractional

110.1001110010
ap_fixed<width, integer>

Parallelization
Exposed to the user via “reuse factor”

- A handle to control resource usage and latency
- Can be specified per-layer

Reuse = 1: Fully unroll everything

- Fastest, most resource intensive

Reuse > 1: reuse one DSP for several operations

- Increases latency, but uses less resources

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

...

Pruning / Compression
Pruned (zero-valued) weight removes multiplication

- Key optimization, possible only on FPGAs

Applied during training, where sparsity is gradually introduced to remove the smallest
magnitude weights

- E.g., with Tensorflow model optimization toolkit (TFMOT)

50% of weights
removed

Quantization
QKeras: Library for training quantization-aware
Keras models - arxiv:2006.10159

- Simple drop-in replacement of Keras layers
- Heterogenous quantization (per layer)

- Automatic quantization through
Bayesian optimization (AutoQ)

- Numerous quantizers available
- Fully supported in hls4ml

- Special case for binary/ternary
arxiv:2003.06308

⬅ no accuracy
loss
 with 4 bits

AutoQ ⮕

15

New

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2003.06308

Evaluation of model optimization techniques
Street-view house numbers dataset (SVHN) - “A tougher MNIST”

- 32x32x3 images

Model architecture (obtained through Bayesian optimization with Keras Tuner and AutoQ):

16

Model performance
Baseline models

- Full 32-bit precision (BF)
- Full 32-bit precision, pruned (BP)

- 50% sparsity
- Polynomial decay

QKeras models
- Quantized (Q)

- Binary (1-bit)
- Ternary (2-bit)
- Quantized to 3-16 bits

- Pruned (QP)
- 50% sparsity

17

Model performance on an FPGA
Using Xilinx Virtex UltraScale+ VU9P series FPGA

- Target device for CMS L1 trigger upgrade

200MHz clock

18More details in our paper!

https://arxiv.org/abs/2101.05108

hls4ml for triggering @ 40 MHz
New trigger algorithms with hls4ml

- Replace standard cut-based algorithms
- Better signal efficiency with NN!

19➔ CMS Phase-2 L1 trigger upgrade TDR

24 INPUT FEATURES:
pT, η, and Φ of the 3 leading jets; the
total event HT; the di-jet pT, invariant

mass, 𝚫R. ET
miss

⬇
3 HIDDEN LAYERS (72x72x72)

⬇
1 OUTPUT: final discriminant score

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

hls4ml for triggering @ 40 MHz
New trigger algorithms with hls4ml

- Replace standard cut-based algorithms
- Better signal efficiency with NN!

- Improve physics objects reconstruction
(muons, taus, jets)

- 2.5x rate reduction!

20⮕ CMS Phase-2 L1 trigger upgrade TDR

36 INPUT FEATURES:
ɸ,θ of track segments in muon stations

track segment quality
track segment curvature

⬇
3 HIDDEN LAYERS (30x25x20)

⬇
1 OUTPUT: muon pT

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

hls4ml for triggering @ 40 MHz
New trigger algorithms with hls4ml

- Replace standard cut-based algorithms
- Better signal efficiency with NN!

- Improve physics objects reconstruction
(muons, taus, jets)

- 2.5x rate reduction!
- Develop new strategies like anomaly detection

with autoencoders for signal-agnostic triggering

21⮕ CMS Phase-2 L1 trigger upgrade TDR

Encoder Decoder

K.Govorkova @ FastML workshop ‘20

W
IP

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf
https://indico.cern.ch/event/924283/contributions/4105192/

hls4ml for triggering @ 40 MHz
New trigger algorithms with hls4ml

- Replace standard cut-based algorithms
- Better signal efficiency with NN!

- Improve physics objects reconstruction
(muons, taus, jets)

- 2.5x rate reduction!
- Develop new strategies like anomaly detection

with autoencoders for signal-agnostic triggering
- Custom NNs @ L1

- Calorimeter clusters classification -
arxiv:2008:03601

- Charged particles track reconstruction -
arxiv:2012:01563

22⮕ CMS Phase-2 L1 trigger upgrade TDR

New

https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2012.01563
https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

Summary
hls4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1µs) latency

Currently being extended to multiple hardware architectures and new neural networks

Many applications in science

More information:

- Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Code: https://github.com/hls-fpga-machine-learning/hls4ml
- Tutorial: http://cern.ch/ssummers/hls4ml-tutorial

23

https://hls-fpga-machine-learning.github.io/hls4ml/
https://github.com/hls-fpga-machine-learning/hls4ml
http://cern.ch/ssummers/hls4ml-tutorial

