ALICE ITS upgrade for LS3

Magnus Mager (CERN) **13th Terascale Detector Workshop** 07.04.2021

Motivation + Design

- ALICE + ITS2
- Possible improvements and performance projections
- Proposal for ITS3

R&D highlights

- mechanics with wafer-scale chips
- bending and interconnection
- test beam results from bent MAPS
- first submission in 65 nm

Study of QGP in heavy-ion collisions at LHC

- i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (\$1 GeV/c) particle reconstruction

ALICE today LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)

Inner Tracking System

LS2

6 layers:

2 hybrid silicon pixel

- 2 silicon drift
- 2 silicon strip

Inner-most layer:

radial distance: 39 mm material: $X/X_0 = 1.14\%$ pitch: $50 \times 425 \ \mu m^2$ rate capability: 1 kHz

7 layers: all MAPS

Inner-most layer:

radial distance: 23 mm material: $X/X_0 = 0.3\%$ pitch: $O(30 \times 30 \ \mu m^2)$ rate capability: 100 kHz (Pb-Pb)

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

ITS2 overview

Good news: it was all built, assembled and tested!

TS2 installation Insertion of first Outer Half-Barrel

Status today: Outer Barrel is completely installed

🖶 🖗 👘 👘

Magnus Mager (CERN) | ALICE ITS3 | 13th Terascale Detector Worksh

ITS2 inner barrel

- ITS2 is expected to perform according to specifications or even better
- The Inner Barrel is ultra-light but rather packed \rightarrow further improvements seem possible
- Key questions: Can we get closer to the IP? Can we reduce the material further?

ITS2: assembled three inner-most half-layers

- Si makes only **1/7th** of total material
- irregularities due to support/ cooling

- Si makes only **1/7th** of total material
- irregularities due to support/ cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²

- Observations:
 - Si makes only **1/7th** of total material
 - irregularities due to support/ cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²

- Observations:
 - Si makes only **1/7th** of total material
 - irregularities due to support/ cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²
- Removal of the circuit board (power+data)
 - **possible** if integrated on chip

- Si makes only **1/7th** of total material
- irregularities due to support/ cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²
- Removal of the circuit board (power+data)
 - **possible** if integrated on chip

- Si makes only **1/7th** of total material
- irregularities due to support/ cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²
- Removal of the circuit board (power+data)
 - **possible** if integrated on chip
- Removal of mechanical support **benefit** from increased stiffness by rolling Si wafers

- Si makes only **1/7th** of total material
- irregularities due to support/ cooling
- Removal of water cooling
 - **possible** if power consumption stays below 20 mW/cm²
- Removal of the circuit board (power+data)
 - **possible** if integrated on chip
- Removal of mechanical support **benefit** from increased stiffness by rolling Si wafers

ITS3 detector concept

Beam pipe Inner/Outer Radius (mm)		16.0/16.5	
IB Layer Parameters	Layer 0	Layer 1	Lay
Radial position (mm)	18.0	24.0	30.
Length (sensitive area) (mm)		300	·
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm ²)	610	816	101
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280
Number of sensors per layer		2	
Pixel size (µm²)		O (10 x 10)	

The whole detector will comprise six (!) chips (current ITS IB: 432) – and barely anything else

Key ingredients:

- 300 mm wafer-scale chips, fabricated using stitching
- thinned down to 20-40 µm (0.02-0.04%) X0), making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs
- Key benefits:
 - extremely low material budget: 0.02-0.04% X0
 - (beampipe: 500 µm Be: 0.14% X0)
 - homogeneous material distribution: negligible systematic error from material distribution

ITS3 performance figures

pointing resolution

[ALICE-PUBLIC-2018-013]

improvement of factor 2 over all momenta

tracking efficiency

large improvement for low transverse momenta

Timeline main milestones

MLR: multiple layer per reticle, ER: engineering run,

BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module

R&D: mechanics

Bending of wafer-scale chips procedure

30 mm (L2) 50 µm dummy chip

Carbon foam selection complete

- Different foams were characterised for machinability and thermal properties
- Baseline is ERG DUOCEL_AR, which also features the largest radiation length

ALLCOMP_HD

0.45-0.68 kg/dm³ 85-170 W/m⋅K

ALLCOMP_LD

0.2-0.26 kg/dm³ >17 W/m⋅K

Attachment of foam supports procedure

- Assembly process being developed
- Different options under study (incl. vacuum clamping)
- Currently working solution based on segmented mylar foil

c) glueing of external layer

b) glueing of foam wedges

d) removal of remaining strips

Assembled Layer 2

Metrology Layer 2

- Reflective, mirror-like, surface fo the Si chip allows Distance from for precise measurement of the edge [mm] deflections
- Very small off-shape variation: <100 µm
- Further optimisation of 2 carbon support placement 1.5 and shape on going 1.15

1.15

1.5

2

Pretty much perfect in shape at first attempt!

Layer 1 **Recent update**

... works! ... now continuing with Layer 0 ... stay tuned!

R&D: bent MAPS

Bending ALPIDE exampl

tension wire

17700

100 µm-thick Kapton

out the set of the set

50 µm-thick ALPIDE

R = 18 mm jig

Interconnection now done routinely at different laboratories

- We exercised different options:
 - wire bonding before bending
 - wire bonding after bending
 - SpTAB bonding
- Very important for the R&D phase:
 - flexible (in sense of "flat-bent-flat-bent-flat-...") are a good vehicle to make direct performance comparisons
- Baseline for final detector implementation is wire bonding after bending
 - will be exercised soon also on large structures

Test beams overview

- ► 3 beam tests at DESY in 2020
- different DUTs

a) Jun 2020

ec 2020

b) Aug/D

PIDE

comprehensive data set

Test beams 1st paper (draft)

	511	0.0
	- 447	- 4.9°
-	- 383	- 9.7°
	- 319	- 14.6° – 9
	- 255 or 255	a ent °2.91
	- 191	-24.4° <u>-</u>
	- 127	- 29.2°
	- 63	-34.1°
0	- 0	- 39.0°

 $\land \land \circ$

Based on analysis of Jun 2020 test beam data, we concluded that:

Bent MAPS work perfectly

- actually, no deviation from the flat performance could be seen
- A publication on this important milestone has been drafted and is under internal review

The chips just continue to work!

Test beams more data

- Very interesting geometries are becoming possible
- Analysis ongoing

double-crossing

grazing

Example event

ALPIDE bent to R = 18 mm beam crossing sensor twice

shallow incident angles

Example event closeup

first crossing

R&D: chip design

Chip submissions MLR1 submission

- MLR1 is the first submission in the TowerJazz 65nm technology scoped within CERN EP R&D WP1.2, but significant drive
 - from ITS3
- Actually much more than what we thought of "first test structures", to give it full justice:
 - transistor test structures
 - analog building blocks (band gaps, LVDS drivers, etc)
 - various diode matrices (small and large)
 - digital test matrices
 - Essentially covers the initial goals of MPW1 and MPW2
- Estimated end-of-line: May 2021

expect O(300) dies per wafer

Chip submissions MLR1 testig preparation

- Several groups are preparing for the testing and characterisation of the first prototypes
 - dedicated test system is being developed to equip a large number of institutes
- Goals vary from:
 - radiation hardness validation of the technology
 - characterisation of charge collection properties _
 - mechanical characterisation of processed, large chips
- Common irradiation plan is being set up

expect O(300) dies per wafer

R&D: outlook

Outlook 2/2: "super-ALPIDE" the first large-scale detector based on bent MAPS ever

- Starting from ALPIDE wafers, instead of dicing out single chips, large areas are cut
 - the super-chip contains 18 ALPIDE dies
 - they are not stitched but can be interconnected individually
- Size matches closely the target size for Layer 0, only that it is shorter (14 instead of 28 cm, just like the 180 nm fallback solution)
- Will allow us to study:
 - handling of large chips
 - the electrical integration
 - the mechanical properties of large processed wafer-scale chips of different thicknesses

*) also 40 and 30 µm available for test

6. C+

Magnus Mager (CERN) | ALICE ITS3 | 13th Terascale Detector Workshop | 07.04.2021 | 31

2×9 ALPHOK 2×9 ALPHOK 50 HINT

14 cm

Outlook 1/2: "µITS3" for the next test beam

- 3 layers of with bent ALPIDEs
- Mimics ITS3:
 - same radii (18, 24, 30 mm)
 - no extra material (opening) in jig along particle trajectory)
- Up to six track points
 - probably one of the smallest beam telescopes ever built
- Will allow us to learn a lot about reconstruction

Summary

- ALICE proposes to build the next-generation Inner Tracking System, based on 300 mm-wafer-scale, 20-40 µm-thin, bent MAPS
- Large momentum has been gathered and maintained during 2020
 - many groups (also ALICE-externals) joined the effort
 - large interest in the technology (65 nm, wafer-scale sensors, bent geometries) from other experiments/future interests
- R&D is making rapid progress on all fronts, in particular:
 - successful in-beam verification of bent MAPS (3 campaigns in 2020)
 - full-size mechanical mockups
- **First prototype chips** fabricated in **65 nm** are about to return for testing - significant drive from the ITS3 community to push this technology
- **Bent detectors have become a reality!**

Supplemental material

ITS3 project startup Eol, Lol, start of R&D

according to schedule with rapid progress on the bending of sensors, interconnection and

