

Timing sensors in 3D technology

G. KRAMBERGER

JOŽEF STEFAN INSTITUTE, LJUBLJANA

Outline

Motivation

- Basics of Timing measurements
- >Quick view of the LGADs the choice for the HL-LHC
- ➢3D detectors for timing applications
 - ➢ 3D with conventional cylindrical/column electrodes
 - ➢3D with trench electrodes
- Conclusions

JSI jubljana

Slovenian Research

Э

Motivation – Physics

HL-LHC upgrade Phase II (2027->)

- number of pileup collisions will increase to 140-200
- huge task to assign reconstructed particles to individual collisions and to extract interesting collisions
- Is there a way to separate vertices also not only in space but also in time

on average 1.6-2.35 vertices per mm

At LHC the vertices are distributed (Gaussian) with: $\sigma_z\text{=}5$ cm & $\sigma_t\text{=}180~\text{ps}$

Tracking detectors (pixel+strip) provide separation of primary vertices in forward region typically ~ 1 mm.

It is a task of the ATLAS-HGTD/CMS-MTD to provide timing resolution of around of ~35 ps for minimum ionizing particles (mip).

- > 20-30% more effective luminosity
- improved reconstruction (b-tagging, isolation of photons leptons, rejection of pile-up jets ...)

RD50

JSI jubljana

lovenia

A goal for the future

Timing at each point along the track:

- → Massive simplification of patter recognition, new tracking algorithms will be faster even in very dense environments
- → Use only "time compatible points"

Timing of tracks - preferably on pixel level:

- > no need for dedicated timing layers as e.g. at HL-LHC
- improved algorithms for track finding

FCC-hh – very challenging requirements by today's standards almost impossible for r<30 cm:

radiation hardness up to 10¹⁸ cm⁻², 300 MGy

➢ timing of tracks ~10 ps

≻cell sizes of 25x50 µm²

surface inner tracker 15 m²

Effective pile

number of vertices

JSI .jubljana

Slovenian Research

аг

Timing measurements

Time resolution

- $ightarrow \sigma_{j}$ -jitter fast rise time and high signal/noise (related to ASIC)
- $> \sigma_{TDC} vey good granularity a challenge for ASIC$

σ_{tw} -time walk component includes (correlated – should not be simply summed in squares):

- weighting field/electric field contribution -> depends on hit position in segmented devices (sometimes called distortion component)
- Landau fluctuations in shape of the signal -> depends on hit position (segmented devices) and gain layer in LGADs
- Landau fluctuations in amount of deposited charge -> correctable with ToA-ToT or CFD

Example: 3 tracks hitting the same pixel/strips and depositing the same amount of charge, but with different induced currents! (non-correctable time walk – will determine the limits of time resolution)

04/07/2021

Conventional planar silicon detectors

>NA62 Gigatracker combines good position resolution with timing good resolution (required for K, π separation).

- > Planar pixel sensors p-on-n of 200 μ m (300x300 μ m², 0.5% X_o per station)
- > The time resolution is around 150 ps, peaking time of 5 ns
- > Radiation tolerance to Φ_{eq} =2x10¹⁴ cm⁻²
- > The key is the TDCPix ASIC
- Time resolution well studied:
 - > Jitter 80 ps
 - Time walk (hit position) 85 ps
 - Energy straggling/Landau 100 ps

TOTAL TIME RESOLUTION ~ 150 ps

GigaTracker presents roughly the limit of achievable time resolution for conventional position sensitive planar detectors.

RD50

LGAD-s and their use at HL-LHC

JSI Ljubljana

Slovenian Research

Timing measurements at HL-LHC

Both experiments use Low Gain Avalanche Sensor Technology and have very similar requirements:

- sensor size 1.3x1.3 mm² (ATLAS 15x15, CMS 16x16 arrays)
- \succ 50 μ m thick active layer
- t_{int}=1.1ns , required charge MPV>4 fC (ATLAS), >6fC CMS
- $\succ \sigma_{\tau}$ =50 ps /track (30-70 ps per layer) at the end of lifetime

HGTD:

- η=2.4-4 coverage
- > 2-2.7 points per track
- > 8 m² of LGAD sensors (readout with ALTIROC)
- \blacktriangleright Radiation hardness: 2 MGy and Φ_{eq} =2.5e15 cm⁻²
- Replacements of sensor (3x for the inner ring), 1x for the middle

ETL:

- η=1.6-3 coverage
- 1-2 points/track (not full coverage)
- > 14 m² of LGAD sensors (readout with ETLROC)
- $\blacktriangleright \Phi_{eq}$ =1.6x10¹⁵ cm⁻² (no replacements)

The main problem is radiation hardness (see M. Moll's presentation)

USICA.ANT

MOLAS

843.2:1119

USTC-1.1 MB

Many attempts to design a more radiation hard gain layer design

The LGADs are limited to fluences Φ_{eq} <3x10¹⁵ - even with C enrichment.

JSI Ljubljana

LGADs to be used at HL-LHC don't have a good fill factor:

- \geq Isolation between the pads (IP) requires space and this is the region without gain, where it is not possible to achieve desired CC and time resolution
- > The reduction of IP is possible, but there is a danger of breakdown if pads get disconnected – HGTD/ETL > 40 μ m
- There are several ways of mitigating that but they all have limitations at:
- High particle rates (AC,DJ-LGAD)
- \geq "Large" fluence (AC)
- > Very small pixel sizes (TI-LGAD)
- > DS processing (iLGAD)

04/07/2021

see M.Moll's presentation

Fill – factor (2nd problem of LGADs)

3D detectors for timing applications

- How about 3D (of all types) as timing detectors?
- They have fill factor ~100% (inclined tracks)
- The radiation tolerance of small cell size devices is large (in signal) and allows operation at higher bias voltages (next slide)

But/However:

RD50

- >3D can be fast ☺ short drift distance, but ☺saddle regions in the field
- There is no multiplication ^(B), but they can be thicker as Landau fluctuations don't matter much, so the signal can be partially compensated ^(D)
- The weighting field hit position will impact the signal (extrm{)} (replacement of the Landau fluctuation problem with the impact position problem).
- For small size sensors and large thickness the capacitance will be much larger, hence noise and the jitter
- Lower operation voltages than for LGADs and possibly lower current (I_{LGAD}=G·I_{gen}) result in smaller power dissipation

Radiation hardness of 3D design

Good charge collection after large fluences (detection efficiency equal to the non-irradiated one after Φ_{eq} $^{3}x10^{16}$ cm⁻²:

Short drift distance and depletion depth

➤ability to bias to >200 V

>Saturation of effective trapping times, effective doping concentration and possibly leakage generations current allow them to be operated to Φ_{eq} >10¹⁷ cm⁻²

JSI Ljubljana

Slovenian Besearch

Operation of 3D sensors at >1e17 cm⁻²

Timing measurements – devices used

The problem is lack of a suitable readout for studies (50x50 µm² << 1.3x1.3 mm²)

CNM produced the devices almost ideal for such study – a 3x3 matrix with investigated cell in the middle and neighbouring cells connected together

ightarrow cell size 50x50 μ m² – RD53 chip design

>p-type bulk (N_{eff} =-1.4·10¹² cm⁻³), n-type collection electrode

>1E, holes 2R=8-10 μ m and 235 μ m and 285 μ m thick

max operational voltage before irradiation ~50-150 V

RD50

JSI _jubljana

Slovenian Besearch

ar

ATLAS **RD50**

Simulation of the device (single cell)

JSI

Ljubljana

Slovenia Slovenian Research

Agency

Simulation (cell size, V_{bias}, T)

A good agreement of the first measurements with simulations!

JSI Ljubljana

Slovenian Research

ar

time walk of ~30 ps

is achievable for

50x50 μ m² cells

For single square cell readout σ_{wf}

- for bias voltages of >50 V
- cell sizes <=50 μm
- low temperatures <-20°C

For multiple cell connected together and inclined tracks even better time resolution can be achieved

around 20-25 ps for 50x50 μm² cell

RMS

 γ^2/nc

Coneta

Mean

0.3

0.2

Fit on Δt to obtain: $\sigma_t = (\sigma_{LGAD}^2 + \sigma_{3D}^2)^{1/2}$

0.1

 $\sigma_{_{\rm wf}}^2 \approx \sigma_{_{3\rm D}}^2 - \sigma_{_{j,3\rm D}}^2$

40

30

20

10

7.926e-11

91.39/61

____×10⁻ 0.5

3483 + 18

2.015e-10 ± 2.549e-12

0.4

Sigma 6.185e-11+2.269e-12

"UCSC timing boards" used – the same used in most LGAD studies for HL-LHC (470 Ω TZ amplifiers, >3 GHz)

TERASCALE 2021, DESY

-10

15% CFD

-10

Iplitude (V)

0.8

0.6

0.4

0.2

-0.2

1.4 %

-5

-5

LGAD Waveform

tan.

LGADO

5

5

10

time (s)

10

time (s)

04/07/2021

Performance after irradiations

$+20^{\circ}$	σ_{3D} (ps)	$\sigma_j \ (\mathrm{ps})$	$\sigma_w f$ (ps)
not irradiated	53 ± 2	36 ± 7	38 ± 4
8e14 MeV n_{eq}/cm^2	37 ± 2	23 ± 3	29 ± 2
$2.3\mathrm{e}15~\mathrm{MeV}~\mathrm{n}_{eq}/\mathrm{cm}^2$	44 ± 2	26 ± 5	29 ± 3
-20°	σ_{3D} (ps)	$\sigma_j \ (\mathrm{ps})$	$\sigma_w f$ (ps)
-20° not irradiated	$ \sigma_{3D} \text{ (ps)} 37\pm2 $	$ \begin{array}{c} \sigma_j \ (\mathrm{ps}) \\ 23 \pm 3 \end{array} $	$\frac{\sigma_w f \text{ (ps)}}{28 \pm 5}$
$\begin{array}{c} -20^{\circ} \\ \hline \text{not irradiated} \\ \hline 8e14 \text{ MeV } n_{eq}/\text{cm}^2 \end{array}$	$\sigma_{3D} (ps)$ 37±2 34±2	$ \begin{array}{c} \sigma_j \text{ (ps)} \\ 23\pm3 \\ 23\pm3 \end{array} $	$ \begin{array}{c} \sigma_w f \text{ (ps)} \\ 28 \pm 5 \\ 34 \pm 2 \end{array} $
$\begin{array}{c} -20^{\circ} \\ \hline \text{not irradiated} \\ \hline 8e14 \text{ MeV } n_{eq}/\text{cm}^2 \\ \hline 2.3e15 \text{ MeV } n_{eq}/\text{cm}^2 \end{array}$	$\sigma_{3D} (ps)$ 37±2 34±2 35±2	$\sigma_j (ps)$ 23±3 23±3 23±4	$\sigma_w f \text{ (ps)}$ 28±5 34±2 27±3

No impact or slightly better performance after irradiations.

At 5x10¹⁵ cm⁻² the σ_{wf} increases by 10 ps – not yet understood why (rebonding ?)

> At high bias voltages the σ_{wf} can improve due to charge multiplication?

JSI Ljubljana

Slovenian Research

ar

RD50

8 wafers of different thickness with different test structures will be produced by CNM – processing has started

Activity	Institute	Lead
Vafer processing	CNM Barcelona	G. Pellegrini
Process/Detector simulations	CNM Barcelona	G. Pellegrini
Signal/timing performance	JSI, Uni. Freiburg	G. Kramberger
imulations		
CCT measurements	Uni. Freiburg, JSI, IFAE	U. Parzefall
Electrical characterization	Uni Freiburg, JSI, UZH, IFAE	C. Betancourt
Jeutron irradiations	JSI	G. Kramberger
iming measurements	JSI, UZH, Uni. Freiburg, IFAE	S. Grinstein
with discrete electronics,		
ALTIROC)		

P S JSI

Ljubljana

Slovenian Research

Agency

Trench 3D timing detectors

How to improve σ_{wf} ? Optimize the design for E_w , and minimize the "price to pay" for that.

- > $55\mu m \times 55\mu m$ pixels (for TimePix/Medipix ASIC family)
- In each pixel a 40 µm long n⁺⁺ trench is placed between continuous p++ trenches used for the bias
- \blacktriangleright 150µm-thick active thickness, on a 350 µm-thick support wafer

RD50

Test beam measurements

Paul Scherrer Institut (PSI): π beam, 280 MeV/c Structure tested: double pixel The discrete electronics board developed within TimeSpot was used.

55x55 µm² pixels

- 150 μm active thickness
- Collection electrode 135 µm deep

SEM HV: 10.0 kV VEGA3 TESCA WD: 11.59 mm Det: SE 50 µm View field: 176 µm SEM MAG: 1.57 kx Date(m/d/y): 10/29/19 FBK Micro-nano Facili

A. Lampis, 16th TRENTO workshop, 2021

JSI

Ljubljana

A. Lampis, 16th TRENTO workshop, 2021 M. Garau, 16th TRENTO workshop, 2021

TCT measurements (ToA wrt to laser trigger) of the response of the sensor to ps laser pulses focused to 5 μ m.

Much larger capacitance of the trench design wrt. to column and planar (ASIC is crucial)

- At small cell sizes needed for superior timing resolution the fill factor is small
 - > For column like the direction of the inclined tracks is not very important
 - For trench detectors the direction of tracks is crucial (detector design tailored to application)

Outlook for the future – σ_{t} =10 ps goal

The cell size should be even more reduced – that makes sense only if the column widths are reduced from ~10 μ m to <5 μ m. For FCC-hh the cell size of ~25x25 μ m² is required for position resolution anyway.

>Narrower columns will reduce also the capacitance -> improvement of S/N and reduction of the jitter.

> Extreme radiation hardness requires thicker active layer to improve the signal (and hit efficiency)

- improved aspect ratio of Deep Reactive Ion Etching (DRIE) is crucial.
- Iarger thickness will lead to large cluster sizes ...?!

> If large fill factor is required trench design could be less appropriate

- reducing the cell size the jitter will become the main contribution to the time resolution (fast integration and good signal/noise needed) and there will be little difference between column and trench design.
- > the fragility of the wafer may become an issue at small cell sizes.

The 3D design with several important modifications is very likely the solution for 4D tracking where high radiation tolerance is required!

Appropriate ASIC development is equally challenging in terms of radiation hardness, power consumption and required functionality per pixel.

Conclusions

Track timing is valuable for HL-LHC, while for any future hadron collider correct assignment of the tracks to different vertices and better track finding will become crucial (4D tracking).

LGADs are viable solution for HL-LHC where 30 ps track resolution is possible, but they have two main drawbacks: radiation hardness and fill factor for which 3D silicon detectors can be a solution

> TimeSpot/INFN and RD50 3D timing projects are ongoing to explore performance of the detectors

>3D technology with small cell design (50x50 μ m²) have been shown to achieve:

- time resolution of around 35-40 ps with "standard" columns before and after irradiation to 5e15 cm⁻² (with time walk contribution of around 25 ps)
- > time resolution of around 20-25 ps with trenches (almost entirely jitter)

Trench design offers superb time-walk contribution (of few ps), but suffers from larger capacitance and worse fill factor

Improving aspect ratio of DRIE should allow for even smaller cells (column 3D cells) where time walk contribution to timing resolution can approach to ~10 ps

There are a lot of problems ahead, but at the moment there is no other technology outperforming 3D when superb radiation hardness and timing resolution are required.