

Any Light Particle Search II (ALPS II)

Aaron Spector DESY Hamburg, Germany

13th Terascale Detector Workshop April 6-8, 2021

ALPS Collaboration

ALPS II Main Contributors						
Partner	Optics	Detector	Magnets	Infrastructure		
DESY	Х	Χ	Χ	Χ		
AEI / LUH	Х					
U. Florida	Х	Χ		Χ		
Cardiff U.	Х					
U. Mainz		Χ				

Combining the expertise of gravitational wave instrumentalists with particle physicists

Partnership between 5 institutions with ~30 members

Axions Hints of the unknown

Mysterious unexplained phenomena

- Strong CP problem ullet
 - **Pecci-Quinn Solution** ullet
- Cold Dark matter ullet
 - Galactic clusters/rotation rates
 - **Gravitational lensing**
 - CMB polarization \bullet
- Stellar cooling rates \bullet
- TeV transparency ullet

Potential explanation

- Axions
 - Low mass and weak coupling to SM particles
 - A single particle could explain:
 - Strong CP problem
 - Cold dark matter
 - Stellar cooling rates
- Axion-like particles
 - Mass and coupling unconstrained
 - Could explain CDM, stellar cooling, TeV transparency
 - Do not explain strong CP problem

Using the coupling to photons in magnetic field

LSW Experiments

- Lasers in B fields: \bullet photon \rightarrow laboratory axions \rightarrow photons
- ALPS I, ALPS II, OSQAR ullet

Helioscopes

- Magnets and X-ray telescopes: \bullet Solar axions \rightarrow photons
- CAST, IAXO, BabyIAXO ullet

Haloscopes

- Volume of magnetic field: \bullet Axions from DM halo \rightarrow photons
- ADMX, HAYSTAC, MADMAX \bullet

Using the coupling to photons in magnetic field

LSW Experiments

- Lasers in B fields: lacksquarephoton \rightarrow laboratory axions \rightarrow photons
- ALPS I, ALPS II, OSQAR ullet

Helioscopes

- Magnets and X-ray telescopes: \bullet Solar axions \rightarrow photons
- CAST, IAXO, BabyIAXO ullet

Haloscopes

- Volume of magnetic field: Axions from DM halo \rightarrow photons
- ADMX, HAYSTAC, MADMAX \bullet

Using the coupling to photons in magnetic field

LSW Experiments

- Lasers in B fields: lacksquarephoton \rightarrow laboratory axions \rightarrow photons
- ALPS I, ALPS II, OSQAR ullet

Helioscopes

- Magnets and X-ray telescopes: ulletSolar axions \rightarrow photons
- CAST, IAXO, BabyIAXO ullet

Haloscopes

- Volume of magnetic field: Axions from DM halo \rightarrow photons
- ADMX, HAYSTAC, MADMAX ullet

Using the coupling to photons in magnetic field

LSW Experiments

- Lasers in B fields: lacksquarephoton \rightarrow laboratory axions \rightarrow photons
- ALPS I, ALPS II, OSQAR ullet

Helioscopes

- Magnets and X-ray telescopes: \bullet Solar axions \rightarrow photons
- CAST, IAXO, BabyIAXO ullet

Haloscopes

- Volume of magnetic field: Axions from DM halo \rightarrow photons
- ADMX, HAYSTAC, MADMAX ullet

Using the coupling to photons in magnetic field

LSW Experiments

- Lasers in B fields: lacksquarephoton \rightarrow laboratory axions \rightarrow photons
- ALPS I, ALPS II, OSQAR ullet

Helioscopes

- Magnets and X-ray telescopes: \bullet Solar axions \rightarrow photons
- CAST, IAXO, BabyIAXO ullet

Haloscopes

- Volume of magnetic field: Axions from DM halo \rightarrow photons
- ADMX, HAYSTAC, MADMAX \bullet

Parameter Space

Current experimental limits

- Haloscopes deep and narrow
- Helioscopes wide band \bullet
- LSW not quite there yet \bullet

Hints

- QCD axion models
 - Post-inflation PQ symmetry breaking
- Cold dark matter
- TeV
- Stellar cooling

Light shining though a wall concept

- High power source directs light through magnetic field \bullet
 - Creates flux Axion-like particles through wall
- Magnetic field converts Axion-like particles back to photons \bullet

Conversion probability:

$$\mathcal{P}_{\gamma \to \varphi} = \mathcal{P}_{\varphi \to \gamma} = \frac{1}{4} \frac{\omega}{k_{\varphi}} ($$

DESY. | Any Light Particle Search II | Aaron Spector | 13th Terascale Detector Workshop | April 8, 2021

 $(gBL)^2 |F(qL)|^2$

Light shining though a wall concept

- High power source directs light through magnetic field \bullet
 - Creates flux Axion-like particles through wall lacksquare
- Magnetic field converts Axion-like particles back to photons ullet

Photons at the detector:

$$(m^2 << 2\omega/L)$$

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $I^4 P_i \tau$

Light shining though a wall concept

- High power source directs light through magnetic field ullet
 - Creates flux Axion-like particles through wall
- Magnetic field converts Axion-like particles back to photons ullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

$$^{4}P_{\mathrm{i}}\tau$$

 $9 = 2 \times 10^{-11} \text{ GeV}^{-1}$ B = 5.3 T $L = 106 \, m$ $P_i = 30 W$ 1 photon every 700,000 years!

Production Cavity

- Amplifies circulating power before the wall \bullet
- Increases flux Axion-like particles through wall \bullet
- Boosts reconverted power by cavity power build up factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $1)^4 P_{\rm c} \tau$

Production Cavity

- Amplifies circulating power before the wall \bullet
- Increases flux Axion-like particles through wall \bullet
- Boosts reconverted power by cavity power build up factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

$$^{4}P_{\mathrm{c}}\tau$$

 $9 = 2 \times 10^{-11} \text{ GeV}^{-1}$ B = 5.3 T $L = 106 \, m$ $P_c = 150 \text{ kW}$ 1 photon every 140 years!

Regeneration Cavity

- Amplifies electromagnetic component of the axion field \bullet
- Increases reconversion probability after the wall \bullet
- Boosts reconverted power by resonant enhancement factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $1^4 \eta \beta_{\rm R} P_{\rm c} \tau$,

Regeneration Cavity

- Amplifies electromagnetic component of the axion field
- Increases reconversion probability after the wall \bullet
- Boosts reconverted power by resonant enhancement factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $^{4}\eta\beta_{\rm R}P_{\rm c}\tau,$

 $9 = 2 \times 10^{-11} \text{ GeV}^{-1}$ B = 5.3 T $L = 106 \, m$ $P_c = 150 \text{ kW}$ $\beta = 20,000$ 1 photon per day!

10-6

11

Regeneration Cavity

- Amplifies electromagnetic component of the axion field \bullet
- Increases reconversion probability after the wall \bullet
- Boosts reconverted power by resonant enhancement factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $^{4}\eta\beta_{\rm R}P_{\rm c}\tau,$

Infrastructure at DESY **Providing the foundation for ALPSII**

Tunnels with 250 m straight sections

- Cryogenic infrastructure \bullet
- 12 x 12 HERA dipole magnets: 5.3 T, 106 m ullet

Infrastructure at DESY Providing the foundation for ALPS II

Tunnels with 250 m straight sections

- Cryogenic infrastructure
- 12 x 12 HERA dipole magnets: 5.3 T, 106 m

Regeneration Cavity

- Amplifies electromagnetic component of the axion field lacksquare
- Increases reconversion probability after the wall \bullet
- Boosts reconverted power by resonant enhancement factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $^{4}\eta\beta_{\rm R}P_{\rm c}\tau,$

 $9 = 2 \times 10^{-11} \text{ GeV}^{-1}$ B = 5.3 T $L = 106 \, m$ $P_c = 150 \text{ kW}$ $\beta = 20,000$ 1 photon per day!

Detection schemes

Measuring single photon power levels

Transition edge sensor

- A Microcalorimeter measures temp. change induced by absorbed photon
- Background characterization on-going
- Demonstrated system at DESY

 \bullet

Heterodyne detection system

 \bullet

 \bullet

Detection schemes

Measuring single photon power levels

Regeneration Cavity

- Amplifies electromagnetic component of the axion field lacksquare
- Increases reconversion probability after the wall \bullet
- Boosts reconverted power by resonant enhancement factor \bullet

Photons at the detector:

$$N_{\gamma} = \frac{1}{16} \left(g_{a\gamma\gamma} BL \right)$$

 $9 = 2 \times 10^{-11} \text{ GeV}^{-1}$ B = 5.3 T $L = 106 \, m$ $P_c = 150 \text{ kW}$ $\beta = 20,000$ 1 photon per day!

ALPS II Optical Cavities

Measuring the conversion-reconversion of Axion-like particles

Production Cavity

- Length: 124 m lacksquare
- Input power: 70 W amplified NPRO (1064 nm)
- Circulating power: 150 kW \bullet

Regeneration Cavity

- Length: 124 m \bullet
- Power-build-up factor: 16,000 \bullet
 - Optimized mirror coatings based on expected scattering losses

DESY. | Any Light Particle Search II | Aaron Spector | 13th Terascale Detector Workshop | April 8, 2021

Technology Demonstrations on 10 m Cavity

- Circulating power ~ 50 kW
- Power build up factor ~ 33,000
- Laser frequency and cavity length stabilization
 - Techniques from gravitational wave detectors

ALPS II Optical Cavities

Measuring the conversion-reconversion of Axion-like particles

Research Article

Vol. 24, No. 25 | 12 Dec 2016 | OPTICS EXPRESS 29237

Optics EXPRESS

Characterization of optical systems for the **ALPS II experiment**

AARON D. SPECTOR,^{1,*} JAN H. PÕLD,² ROBIN BÄHRE,^{3,4} AXEL LINDNER,² AND BENNO WILLKE ^{3,4}

Põld and Spector EPJ Techniques and Instrumentation (2020) 7:1 https://doi.org/10.1140/epjti/s40485-020-0054-8 EPJ.Org	EPJ Techniques and Instrumentation
RESEARCH ARTICLE	Open Access
Demonstration of a length control system for ALPS II with a high fines cavity	sse 9.2 m
	Magnet String

Technology

- Circulating
- Power bui

Field Overlap

Quantifying the coupling between the cavities

Dual Resonance

- PC circulating field must be resonant with ulletlength of the RC
- Coupling follows cavity Lorentzian ullet

DESY. | Any Light Particle Search II | Aaron Spector | 13th Terascale Detector Workshop | April 8, 2021

Spatial overlap

- PC and RC must share same spatial eigenmode
- Can be expressed as an overlap integral that is \bullet simplified to the terms in following expression

$$\eta_{\text{lat}}(t) \approx \sqrt{1 - \left|\frac{\delta x}{\omega_0} + i\frac{\delta \theta_x}{\theta_d}\right|^2 - \left|\frac{\delta y}{\omega_0} + i\frac{\delta \theta_y}{\theta_d}\right|^2 - \left|\frac{\delta \omega}{\omega_0} + i\frac{\delta z}{2z_R}\right|^2}$$

$$tal > 0.9$$

$$b_{\text{Detector}}$$

$$b_{\text{Detector}}$$

Field Overlap

Quantifying the coupling between the cavities

Dual Resonance

- PC circulating field must be resonant with ulletlength of the RC
- Coupling follows cavity Lorentzian ullet

DESY. | Any Light Particle Search II | Aaron Spector | 13th Terascale Detector Workshop | April 8, 2021

Spatial overlap

- PC and RC must share same spatial eigenmode
- Can be expressed as an overlap integral that is \bullet simplified to the terms in following expression

$$\eta_{\text{lat}}(t) \approx \sqrt{1 - \left|\frac{\delta x}{\omega_0} + i\frac{\delta \theta_x}{\theta_d}\right|^2 - \left|\frac{\delta y}{\omega_0} + i\frac{\delta \theta_y}{\theta_d}\right|^2 - \left|\frac{\delta \omega}{\omega_0} + i\frac{\delta z}{2z_R}\right|^2}$$
Fall > 0.9

The provide the second second

Dual Resonance

Maintaining the coupling between the cavities

PC circulating field must be resonant in RC

- Additional Reference Laser will be coupled to RC length
- Phase lock loop established by actuating on the length of the PC \bullet
 - Requires position accuracy on the order of pm
 - Environmental noise > 10 μ m \rightarrow Length actuation with kHz bandwidths

Spatial Overlap

Maintaining the coupling between the cavities

PC circulating field must in nearly the same mode as the RC

- Central Optical Bench maintains alignment of the flat mirrors (< 5 μ rad)
 - Passive stability of COB demonstrated with prototypes \bullet
- Eigenmode position sense with QPDs on the COB ullet
 - Fed back to alignment actuators for the curved end mirrors

Central Optical Bench

Maintaining the coupling between the cavities

- Tracks path length changes
- Maintains cavity alignment \bullet
- Wall
- Stray light mitigation system \bullet

Conclusion

ALPS II will probe beyond the CAST limit (m < 0.1 meV)

- Probe of hints from stellar cooling and TeV transparency \bullet
- Requires sophisticated optical and detection systems lacksquare
- Optical system approaching limits of conventional LSW \bullet

ALPS II is nearly ready to go

First science run planned for this year! lacksquare

Future How far can ALPSII and LSW go?

ALPS II Optics upgrade

- What is ALPS II capable of?
- P_{PC}: 2 MW, β_{RC} : 40,000
- Sensitivity of g ~ $1.2 \times 10^{-11} \text{ GeV}^{-1}$??

Future LSW

- Dipole magnets:
 - 13T w/ 100mm bore (\sim 500 m strings) ullet
- P_{PC}: 1 MW, β_{RC} : 20,000
- Sensitivity of g ~ $1.4 \times 10^{-12} \text{ GeV}^{-1}$??
 - More advanced actuation/suspension \bullet required for larger mirrors

25

\bullet from DM halo ADMX, HAYSTAC, MADMAX ulletAxion-Helioscopes Dipole magnets and X-ray ulletCoup telescopes \rightarrow solar axions sensiti CAST, IAXO, babyIAXO ulletMass E **LSW Experiments** Lasers in B fields \rightarrow axions in lacksquareMod the laboratory Depend ALPS I, ALPS II, OSQAR ullet

Searches for Axion-like Particles

Using the coupling to photons in magnetic field

Haloscopes

Microwave cavities \rightarrow axions

	Haloscopes	Helioscopes	LSW
-flux	High	Medium	N/A
ling ivity	High	Medium	Medium
Band	Narrow	Wide	Wide
lel lence	High	Medium	Low

26

Unbending the HERA Magnets Preparing HERA dipoles for ALPS II

Magnets must be unbent

- Formerly used in HERA arcs
- Straightened for sufficient aperture \bullet
- 24 straightened and tested, all 24 worked ullet

Position along the beam pipe

Unbending the HERA Magnets Preparing HERA dipoles for ALPS II

Magnets must be unbent

- Formerly used in HERA arcs
- Straightened for sufficient aperture \bullet
- 24 straightened and tested, all 24 worked ullet

Position along the beam pipe

Magnet sequence based on free aperture

- Largest aperture magnets placed at ends
- Smallest aperture at center \bullet
- Allows for lowest cavity clipping losses \bullet

$$I(r,z) = \frac{2P}{\pi w(z)^2} \exp\left(-2\frac{r^2}{w(z)^2}\right) \qquad w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2}$$

500 m magnet strings: ~100 mm bore diameter \bullet

Magnet sequence based on free aperture

- Largest aperture magnets placed at ends
- Smallest aperture at center \bullet
- Allows for lowest cavity clipping losses \bullet

$$I(r,z) = \frac{2P}{\pi w(z)^2} \exp\left(-2\frac{r^2}{w(z)^2}\right) \qquad w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2}$$

500 m magnet strings: ~100 mm bore diameter \bullet

Magnet sequence based on free aperture

- Largest aperture magnets placed at ends
- Smallest aperture at center \bullet
- Allows for lowest cavity clipping losses \bullet

$$I(r,z) = \frac{2P}{\pi w(z)^2} \exp\left(-2\frac{r^2}{w(z)^2}\right) \qquad w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2}$$

500 m magnet strings: ~100 mm bore diameter \bullet

Magnet sequence based on free aperture

- Largest aperture magnets placed at ends
- Smallest aperture at center \bullet
- Allows for lowest cavity clipping losses \bullet

$$I(r,z) = \frac{2P}{\pi w(z)^2} \exp\left(-2\frac{r^2}{w(z)^2}\right) \qquad w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2}$$

500 m magnet strings: ~100 mm bore diameter lacksquare

Axion-Photon Interaction in a Magnetic Field Measuring the conversion-reconversion of Axion-like particles

Probability of photon converting to axion-like particle

- Probability of conversion: $\mathcal{P}_{\gamma \to \varphi} = \mathcal{P}_{\varphi \to \gamma} =$ ullet
- Large enough mass will cause a loss in the coherence \bullet of the axion-like field
 - F_{sin} For low masses ($m^2 << 2\omega/L$) F = 1

 $q = n\omega$

$$\frac{1}{4}\frac{\omega}{k_{\varphi}}(gBL)^2|F(qL)|^2$$

$$k_{\varphi} = \sqrt{\omega^2 - m_{\varphi}^2}$$

$$\begin{aligned} \sup_{\text{ngle}}(qL) &= \left| \frac{2}{qL} \sin\left(\frac{qL}{2}\right) \right| \\ &- \sqrt{\omega^2 - m_{\varphi}^2} \approx \omega(n-1) + \frac{m_{\varphi}^2}{2\omega} \end{aligned}$$

