

ECHO

- ¹⁶³Ho and neutrino mass
- Technological challenges
- Metallic magnetic calorimeters with enclosed ¹⁶³Ho
- Conclusions

¹⁶³Ho calorimetric spectrum

 $^{163}_{67}\text{Ho}{\rightarrow}^{163}_{66}\text{Dy}^* + \nu_e$

 $^{163}_{66}$ Dy^{*} \rightarrow $^{163}_{66}$ Dy + $E_{\rm C}$

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- Q_{EC} = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 S. Eliseev et al., *Phys. Rev. Lett.* **115** (2015) 062501

Measured neutrino complementary spectrum No final state problems

es: Unresolved pile-up

Source = Detector

Calorimetric measurement

A. De Rujula and M. Lusignoli, Phys. Lett. 118B (1982)

¹⁶³Ho calorimetric spectrum

Source = Detector

Calorimetric measurement

A. De Rujula and M. Lusignoli, Phys. Lett. 118B (1982)

 $^{163}_{67}\text{Ho}{\rightarrow}^{163}_{66}\text{Dy}^* + \nu_e$

 $^{163}_{66}$ Dy^{*} \rightarrow $^{163}_{66}$ Dy + $E_{\rm C}$

M. Braß and M. W. Haverkort, New J. Phys. 22 (2020) 093018

Requirements for sub-eV sensitivity

- Statistics in the end point region
- $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$
- ightarrow Large amount of high purity ¹⁶³Ho source
- Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)
- $f_{\rm pu} < 10^{-5}$
- $\tau_r \sim 1 \ \mu s \rightarrow a \sim 10 \ Bq$
- **10⁵ pixels**
- ightarrow Fast and multiplexable detectors
- Background level below unresolved pile-up
- < 10⁻⁶ events/eV/det/day
- ightarrow Identification and suppression of background sources
- Precise characterization of the endpoint region
- $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

 \rightarrow High energy resolution low temperature microcalorimeters with enclosed $^{163}\mathrm{Ho}$

ECHo phases

Activity per pixel: ~ 1 Bq Number of detectors: ~ 60 Readout: parallel two stage SQUID

Supported by DFG Research Unit FOR 2202/1

ECHo-100k (2018 – 2021+)

Activity per pixel: 10 Bq Number of detectors: 12000 Readout: microwave SQUID multiplexing

Supported by DFG Research Unit FOR 2202/2

...

Calorimetric measurement

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

Calorimetric measurement – Detectors

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

Calorimetric measurement – Detectors

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

MMC are operated at T < 30 mK in cryostats

Calorimetric measurement – Detectors

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

Fast risetime

 \rightarrow Reduction un-resolved pile-up

Extremely good energy resolution

 \rightarrow Reduced smearing in the end point region

Escape-lines

6

1.2%-

Excellent linearity

 \rightarrow precise definition of the energy scale

Focal plane detector for IAXO 64 pixels

MOCCA system for mass spectrometry @CSR 4096 pixels

Calorimetric measurement – Source

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

Required activity in the detectors for sub-eV \rightarrow >10⁶ Bq \rightarrow >10¹⁷ atoms \rightarrow >27 µg

Neutron irradiation (n,γ) -reaction on ¹⁶²Er

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.6 m 5+	2.48 h 7/2-	15.0 m 1+	2- 2-	29 m 1+	7/2-
EC	EC	EC	EC	EC,β-	100

Jo

Excellent chemical separation 95% efficiency

Available 163 Ho for ECHo $\sim 2 \times 10^{18}$ atoms (10 MBq)

H. Dorrer et al, Radiochim. Acta 106(7) (2018) 535-48

Calorimetric measurement – ¹⁶³Ho implantation

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

Mass separation and ion implantation in MMC pixels

Demonstrated in 2009: on-line implantation @ISOLDE-CERN L. Gastaldo et al., Nucl. Inst. Meth. A 711 (2013) 150

- Optimization of ¹⁶³Ho beam production and control at RISIKO @ Institute of Physics, Mainz University
 - Resonant laser ion source efficiency
 (69 ± 5^{stat} ± 4^{syst})%
 - Reduction of ^{166m}Ho in MMC
 ^{166m}Ho/¹⁶³Ho < 4(2)10⁻⁹
 - Beam focalization

Calorimetric measurement – 4π geometry

ECHo uses large arrays of low T metallic magnetic calorimeters with enclosed ¹⁶³Ho

F. Mantegazzini, to be submitted to JINST (2021)

ECHo-1k array

64 pixels can be loaded with ¹⁶³Ho

14

+ 2 temperature pixels

+ 2 detectors for diagnostics

Design performance: $\Delta E_{\rm FWHM} \simeq 5 \text{ eV}$ $\tau_{\rm r} \simeq 90 \text{ ns}$ (single channel readout)

ECHo-1k array

- 64 pixels can be loaded with 163 Ho + 2 temperature pixels
- + 2 detectors for diagnostics

Design performance: $\Delta E_{FWHM} \simeq 5 \text{ eV}$ $\tau_r \simeq 90 \text{ ns}$ (single channel readout)

✓ presence of non-implanted chips for in-situ background determination

6 ECHo-1k chips implantanted @RISIKO

F. Mantegazzini, to be submitted to JINST (2021)

Connector for field and heat currents

ECHo-1k chip-Au implanted @RISIKO

- High purity ¹⁶³Ho source \rightarrow activity per pixel $a \approx 1$ Bq
- 4 Front-end chips each with 8 dc-SQUIDs for parallel readout

F. Mantegazzini, submitted to NIM A (2021), arXiv:2102.11100 [physics.ins-det]

Connectors for connection to the amplifier SQUIDs

16

F. Mantegazzini, submitted to NIM A (2021), arXiv:2102.11100 [physics.ins-det]

17

arXiv:2102.11100 [physics.ins-det]

ECHo-1k data – Live!

Proof of concept

4 day measurement with 4 pixels loaded with ~0.2 Bq ¹⁶³Ho

- measurement performed underground
- test for data reduction and spectral shape analysis

• $Q_{\rm EC} = (2838 \pm 14) \, {\rm eV}$

• *m*(v_e) < 150 eV (95% C.L.)

ECHo-1k high statistics spectrum

ECHo-1k chip-Au

15 channels

2 temperature channels 23 pixel with implanted ¹⁶³Ho 3 background pixels average activity = 0.94 Bq total activity of 28.1 Bq

20

ECHo-1k chip-Ag

22 channels
2 temperature channels
34 pixel with implanted ¹⁶³Ho
6 background pixels
average activity = 0.71 Bq
total activity of 25.9 Bq

ECHo-1k high statistics spectrum

ECHo-1k chip-Au

15 channels 2 temperature channels 23 pixel with implanted ¹⁶³Ho 3 background pixels average activity = 0.94 Bq total activity of 28.1 Bq

ECHo-1k chip-Ag

22 channels
2 temperature channels
34 pixel with implanted ¹⁶³Ho
6 background pixels
average activity = 0.71 Bq
total activity of 25.9 Bq

21

Further characterization

- Thermodynamical properties of single pixels
- Readout performance

ECHo-1k high statistics spectrum

ECHo-1k chip-Au

15 channels 2 temperature channels 23 pixel with implanted ¹⁶³Ho 3 background pixels average activity = 0.94 Bq total activity of 28.1 Bq

ECHo-1k chip-Ag

22 channels
2 temperature channels
34 pixel with implanted ¹⁶³Ho
6 background pixels
average activity = 0.71 Bq
total activity of 25.9 Bq

A number of ¹⁶³Ho events larger than 10⁸ has been acquired in the first months of 2020

This statistics allow for investigating the value of the electron neutrino effective mass down to **20 eV**

Data reduction started: new limit for m_{β} si coming soon!

- ✓ Design and fabrication completed
- ✓ Characterised with ⁵⁵Fe external source

Towards ECHo-100k – MMC array

What is new in ECHo-100k?

- Optimised performances:
 - Lower heat capacity → higher energy resolution
 - Optimised thermalisation with gold bridges
 → better thermalisation
- Optimised pixel ordering for efficient implantation

Towards ECHo-100k – MMC array

What is new in ECHo-100k?

- Optimised performances:
 - Lower heat capacity → higher energy resolution
 - Optimised thermalisation with gold bridges
 → better thermalisation
- Optimised pixel ordering for efficient implantation

Towards ECHo-100k – MMC array

2 chips have been implanted @RISIKO in January – 10 Bq/pixel

Towards ECHo-100k – Multiplexing

Room temperature electronics

ECHo-1k:

MMC

w

۸۸۸

1st stage

~ 50 detectors

> 5.000 detectors

26

How to read out a large number of detectors ?

Multiplexed readout:

~ 500 detectors per readout channel

For ECHo → Microwave SQUID multiplexing

Scalability

Single channel readout – two stage SQUID scheme: 10 wires per channels SQUID electronics

2nd stage

Not scalable → Parasitic heat load number of wires costs complexity ~N

Towards ECHo-100k – Multiplexing

Microwave SQUID multiplexing Single HEMT amplifier and 2 coaxes to read out **100 - 1000** detectors

27

S.Kempf et al., J. Low. Temp. Phys. 175 (2014) 850-860

Towards ECHo-100k – Multiplexing

Microwave SQUID multiplexing Single HEMT amplifier and 2 coaxes to read out **100 - 1000** detectors

 Successful characterization of first prototypes with external ⁵⁵Fe
 → Very promising results:

Very promising results:
 8 channels (16 pixels)

S.Kempf et al., *AIP Advances* **7** (2017) 015007 M. Wegner et al., J. Low Temp. Phys. **193**, 462 (2018)

Soon tests with ¹⁶³Ho loaded MMC arrays

Conclusions

- V The results obtained with ¹⁶³Ho loaded MMCs paved the way to large scale neutrino mass experiments based on ¹⁶³Ho
- A first improvement on the effective electron neutrino mass limit has been obtained in a proof of concept measurement
- V More than 10^{8} ¹⁶³Ho events have been acquired within the ECHo-1k phase → A new limit at the level of 20 eV on the effective electron neutrino mass is coming soon
- V Important steps towards ECHo-100k have been demonstrated: new ECHo-100k array + multiplexed readout

Research Unit FOR 2202

Thank you!

