

Direct measurement of the topquark decay width

Thomas Peiffer

13th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" 27 November 2019

- Decay width of the top quark:
 - Measure for the lifetime
 - Can be increased by New Physics, like FCNCs, top \rightarrow H[±], CKM modifying theories
 - Expected in SM: Γ_t = 1.322 GeV @NNLO (Phys. Rev. Lett. 110 (2013) 042001)
 - Previous ATLAS measurement yields: Γ_t = 1.76 ± 0.33(stat.) ^{+0.79}_{-0.68}(syst.) GeV using 20.2 fb⁻¹ @ 8 TeV (Eur. Phys. J. C 78 (2018) 129)

 \rightarrow first "real" measurement

Here:

direct measurement via kinematic reconstruction with full 13 TeV dataset (139 fb⁻¹) in top-pair events (ATLAS-CONF-2019-038)

Dilepton event selection

Kinematic reconstruction variables: $m_{\rm lb}$ and $m_{\rm b\overline{b}}$

Template creation for various Γ_t

Profile likelihood fit to extract Γ_t

- Select ee, eµ and µµ events:
 - Single lepton triggers
 - Exactly two electrons or muons with p_{τ} >25/27 GeV (2015/2016-2018)
 - At least two b-jets with p_{τ} >25 GeV (b-tagging with 60% efficiency)
 - Z-veto and E_{τ}^{miss} >60 GeV in ee and $\mu\mu$

	ee	$\mu\mu$	eμ	
$t\bar{t}$	34000 ± 1700	$\begin{array}{rrrr} 49100 \pm 2500 \\ 1570 \pm & 80 \\ 390 \pm & 200 \\ 41 \pm & 20 \end{array}$	176000 ± 9000	
Single top	1150 ± 60		5300 ± 260	
$Z+VV+t\bar{t}X$	230 ± 120		380 ± 190	
Fake leptons	800 ± 400		2100 ± 1100	
Total prediction	37000±1800	51100±2500	184000±9000	
Data	37926	52166	186951	

Event yields estimated from simulation:

- For tt
: Powheg-Box-V2+Pythia8 scaled to NNLO+NNLL prediction

- Natural choice: invariant mass of the top quark
 - \rightarrow Only accessible via decay products
 - \rightarrow Would need neutrino reconstruction
- Alternative choice: m_{lb}
 - Combine leading p_T -lepton with closest b-jet in ΔR
 - Pair second lepton with remaining closest b-jet
 - Correct pairing found in 63% of the events
- In the likelihood fit:
 - Use m_{lb} to extract Γ_t in eµ region
 - Take $m_{b\overline{b}}$ in ee and $\mu\mu$ regions to constrain jet systematics

Template creation

Need fit templates for various Γ_t values:

- On truth level: m_t distribution described by Breit-Wigner
 (BW) function
- Re-weight nominal MC sample with ratio of BW functions for different Γ_{t} values

- **But**: need templates for continuous Γ_t values in likelihood fit
 - Solution: Interpolate between templates T_i
 - Template $m_{lb}(\Gamma_t) = \Sigma w_i^* T_i$
 - Weight $w_i = w_i(\Gamma_t)$ taken from piece-wise linear interpolation

- Perform template profile likelihood fit to:
 - m_{lb} in eµ region
 - $m_{b\bar{b}}$ in ee and $\mu\mu$ regions
- Parameter of interest: Γ_t
 - Fit templates are interpolated as function of $Γ_t$
- Systematic uncertainties included as nuisance parameters
- Fit is tested with Asimov data:
 - Use SM prediction as input and perform likelihood scan

• Run the fit with different input Γ_{t} values

Input Γ_t [GeV]	Mean value [GeV]	Uncert. [GeV]	
0.5	0.51	+0.42 -0.29	
0.7	0.70	+0.47 -0.37	
1.0	1.00	$+0.49 \\ -0.44$	
1.32	1.32	$+0.49 \\ -0.49$	
1.5	1.50	$+0.50 \\ -0.49$	
2.0	2.00	+0.52 -0.50	
2.5	2.50	+0.54 -0.51	

• Fit applied on data yields:

 $\Gamma_t = 1.94^{+0.52}_{-0.49} \text{ GeV}$

Source	Impact on Γ_t [GeV]		
Jet reconstruction	±0.24		
Signal and bkg. modelling	±0.19		
MC statistics	±0.14		
Flavour tagging	±0.13		
$E_{\rm T}^{\rm miss}$ reconstruction	± 0.09		
Pile-up and luminosity	± 0.09		
Electron reconstruction	± 0.07		
PDF	± 0.04		
$t\bar{t}$ normalisation	± 0.03		
Muon reconstruction	± 0.02		
Fake-lepton modelling	± 0.01		

Post-fit distributions

Very good agreement between data and fitted model

- Top width depends on top mass
- Default top mass: 172.5 GeV
- No systematic top-mass uncertainty considered
- To evaluate top-mass dependency, repeat fit with templates for m_t =172 and 173 GeV

	$m_t = 172 \text{ GeV}$		$m_t = 172.5 \text{ GeV}$		$m_t = 173 \text{ GeV}$	
	Mean [GeV]	Unc. [GeV]	Mean [GeV]	Unc. [GeV]	Mean [GeV]	Unc. [GeV]
Measured	2.01	$+0.53 \\ -0.50$	1.94	+0.52 -0.49	1.90	$+0.52 \\ -0.48$
Theory	1.306	< 1%	1.322	< 1%	1.333	< 1%

Top mass shifts measured values as well as prediction slightly

- Analysis with full Run II dataset
- Kinematic reconstruction method to determine Γ_t
- Profile likelihood fit to extract Γ_{t} in dilepton $t\bar{t}$ events
- Most precise top-width measurement so far:

 $\Gamma_t = 1.9 \pm 0.5 \text{ GeV}$

- Uncertainty dominated by jet and modelling uncertainties
- Compatible within 1-2 σ with the SM prediction of 1.322 GeV