Prospects of measuring Higgs boson decays into muon pairs at the ILC

Shin-ichi Kawada, Jenny List, Mikael Berggren (DESY)

13th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" @ DESY

2019/November/25 - 27

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Introduction

Discovery of SM-like Higgs boson at the LHC

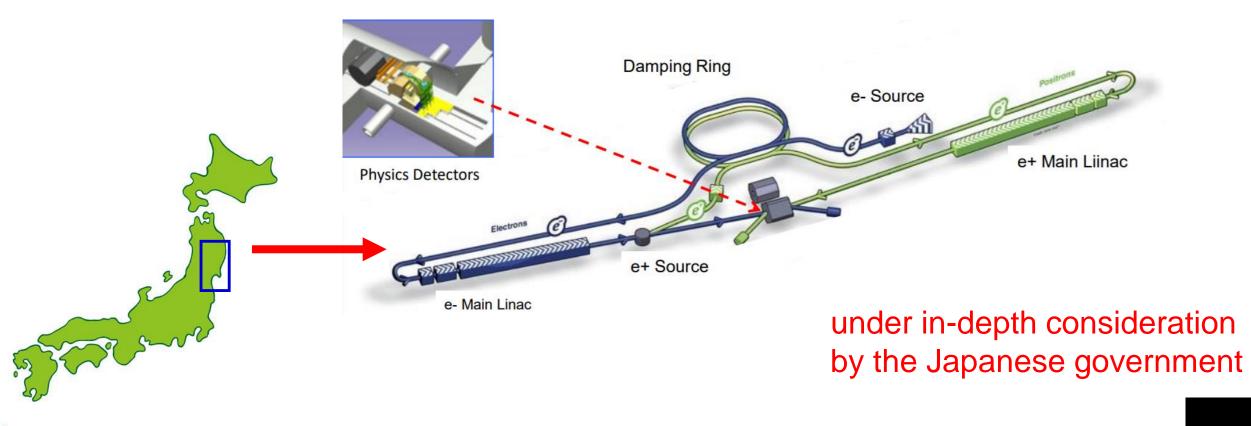
But, still many open questions:

- SM Higgs? BSM Higgs?
- dark matter, dark energy
- BSM (SUSY, composite...)

Precise measurement of Higgs boson

would be a key to answer the questions

- mass-coupling relation
- any deviation shows the existence of BSM
- typically small deviation


One example: Supersymmetry

$$\frac{g_{hbb}}{g_{h_{\rm SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{\rm SM}\tau\tau}} \simeq 1 + 1.7\% \left(\frac{1\,{\rm TeV}}{m_A}\right)^2$$

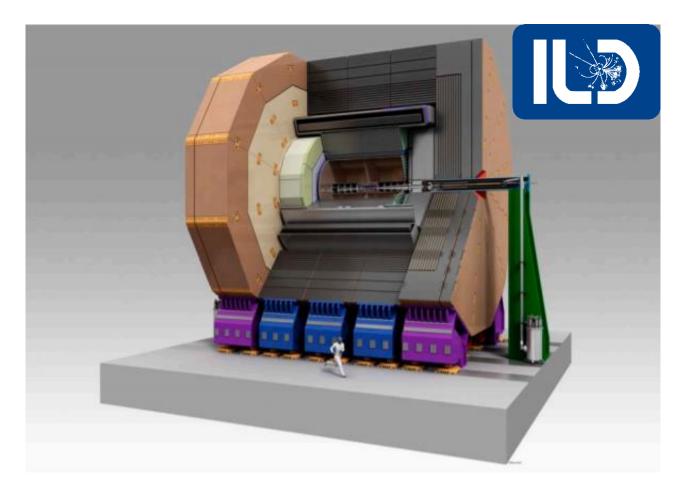
arXiv:1306.6352

The International Linear Collider (ILC)

- e^+e^- collider, $E_{CM} = 250$ GeV (upgradable to 500 GeV, 1 TeV)
- polarized beam (e^- : $\mp 80\%$, e^+ : $\pm 30\%$)
- clean environment, known initial state

Key Point

LHC


ILC

- $\sigma \times BR$ measurements $\sigma \times BR$ measurements
- σ measurement impossible σ measurement (recoil technique)
- model-dependent

- highly model-independent

Detector Concept at the ILC

ILD (International Large Detector)

Tracker: Vertex, TPC Calorimeter: ECAL, HCAL 3.5T magnetic field Yoke for muon, Forward system

Requirements:

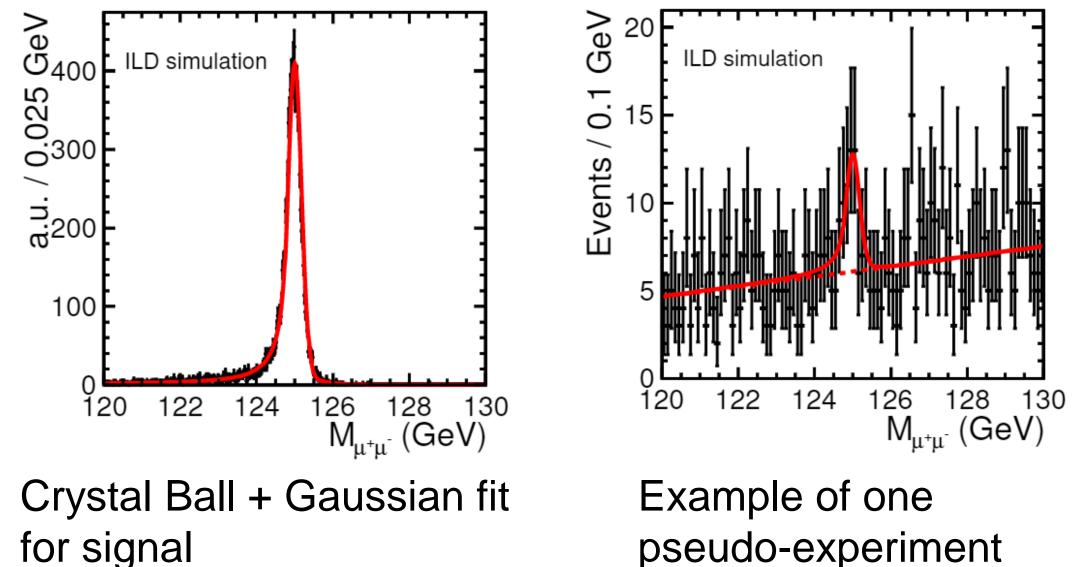
- > Impact parameter resolution $\sigma_{r\phi} \sim 5 \oplus \frac{10}{p \sin^{3/2} \theta} \mu m$
- > Momentum resolution $\sigma_{1/p_T} \sim 2^*10^{-5} \text{ GeV}^{-1}$
- > Energy resolution $\sigma_E/E = 3 4\%$

This Talk: $h \rightarrow \mu^+ \mu^-$

- Can be used for testing:
 - $y_f \propto m_f$
 - mass generation mechanism between 2nd/3rd leptons ($\kappa_{\mu}/\kappa_{\tau}$) and 2nd lepton/quark (κ_{μ}/κ_{c})
- Challenging: tiny branching ratio (BR($h \rightarrow \mu^+ \mu^-$) = 2.2*10⁻⁴)
- Previous studies: mostly performed at 1 TeV or higher
- This study: 250 GeV & 500 GeV, $q\bar{q}h$ and $v\bar{v}h$ final states, L/R beam polarization; 2 × 2 × 2 = 8 channels

 $h \rightarrow \mu^+ \mu^-$ Events at the ILC

P(e, e⁺)=(-0.8, 0.3), M_=125	5 GeV	\sqrt{s}	process	beam pol.	abbreviation	$\int Ldt \ (ab^{-1})$	Nsignal		
400 [— OM -11 47b 1		-=1.	L	qqh250-L	0	41.1		
	──SM all ffh ──Zh	250 GeV	$q\overline{q}h$	R	qqh250-R	0.9	28.1		
€300 - C	— WW fusion		$v\overline{v}h$	L	nnh250-L		15.0		
Section Based of the section of the	-ZZ fusion			R	nnh250-R		8.4		
		500 GeV	$q\overline{q}h$ $\begin{array}{c} L\\ R\end{array}$	L	qqh500-L		24.6		
				qqh500-R	1.6	16.5			
	-v		$v\overline{v}h$	L	nnh500-L	1.0	57.5		
	н		vvn	R	nnh500-R		7.9		
	v e^+ e^+ e^+ e^+ $e^ e^ e^-$	L: (e ⁻ , e ⁺) = (-0.8, +0.3) R: (e ⁻ , e ⁺) = (+0.8, -0.3)							
200 250 300 35	in total ~200 events at ILC								
√s (GeV)			cf: O(10 ⁴) at HL-LHC						
			already ~1500 events at LHC-Run2						


Analysis Settings

- Geant4-based full detector simulation with ILD model
- Included all SM backgrounds
 - Number of total MC events = $O(10^7)$ for each center-of-mass energy

Summary of Analysis Procedure

- Select $h \rightarrow \mu^+ \mu^-$ candidate
- Channel-specific reconstruction and preselection
- TMVA (BDTG) analysis
- Toy MC using $M_{\mu^+\mu^-}$
 - Crystal Ball + Gaussian for signal modeling f_S , first order polynomial for background modeling f_B
 - 50000 times pseudo-experiments and fitting with $f \equiv Y_S f_S + Y_B f_B$
 - optimization performed by changing BDTG score cut

Example Plots (qqh250-L)

Doculto(1)	channel	BDTG score cut	signal	other Higgs	"irreducible"	other SM background	
Results (1)	qqh250-L	> 0.50	29 (70.1%)	0.1	570	4	
	qqh250-R	> 0.90	16 (58.4%)	0	143	4	
	nnh250-L	> 0.95	4.2 (28.2%)	0	155	12	
	nnh250-R	> 0.70	4.5 (53.3%)	0	171	14	
	qqh500-L	> 0.60	13 (53.5%)	4.2	114	9	
	qqh500-R	> 0.25	10 (60.8%)	9.6	71	7	
	nnh500-L	> 0.50	31 (53.5%)	0	745	48	
	nnh500-R	> 0.35	3.8 (48.1%)	0	90	1	
Precision on $\frac{\Delta(\sigma \times BR(h \to \mu^+ \mu^-))}{(\sigma \times BR(h \to \mu^+ \mu^-))}$							
$\sqrt{s} = 250 \text{ GeV}$ $a\overline{a}h$	$v\overline{v}h$	$\Pi C 250 \perp \Pi C$	2250 ± 500				

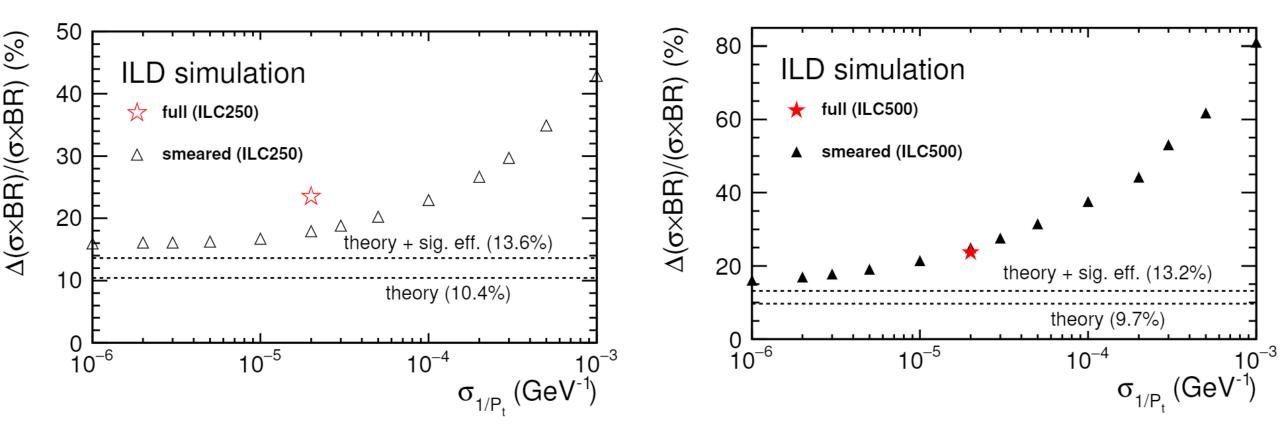
$\sqrt{s} = 250 \text{ GeV}$	$q\overline{q}h$	$v\overline{v}h$	ILC250	ILC250+500	
L	34%	117%	24%		- ILC250: ~100 events
R	36%	112%	24%		ILC250+500:
$\sqrt{s} = 500 \text{ GeV}$	$q\overline{q}h$	$v\overline{v}h$	ILC500	17%	~200 events
L	43%	37%	24%		~200 events
R	49%	107%	24%		

Discussion (1)

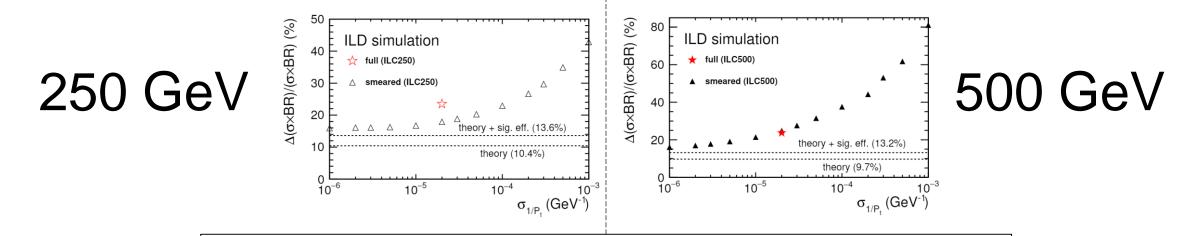
	ILC250	ILC250+500
full	24%	17%
theory	10.4%	7.1%
theory + sig. eff.	13.6%	9.5%

factor ~2.4 above theory (100% sig. eff. and no backgrounds) factor ~1.7 above theory + sig. eff. (theory but sig. eff. from full)

signal selection efficiency ~50% in full $h \rightarrow \mu^+\mu^-$ is rare event ---> crucial


"irreducible" background

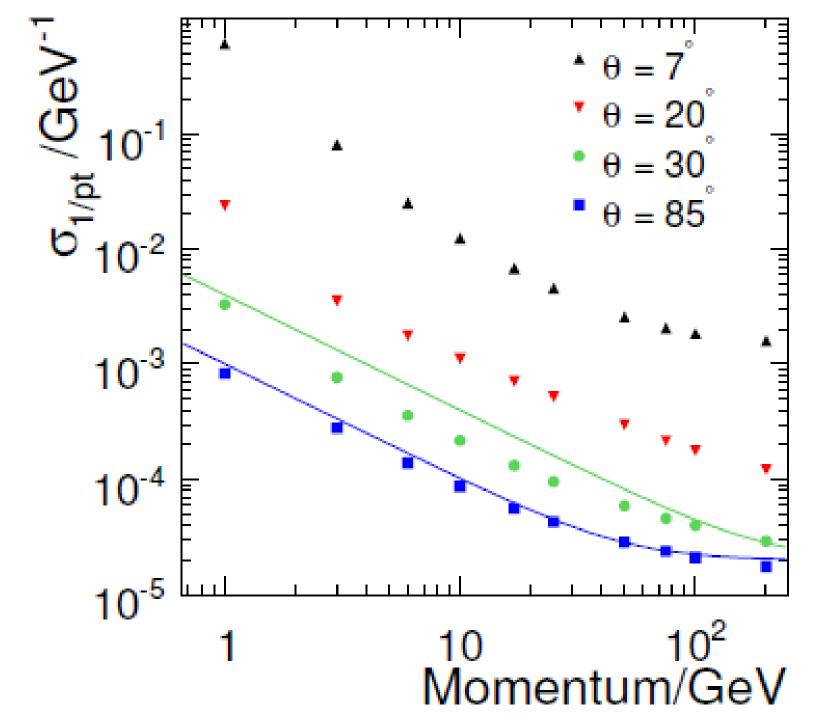
 $qq\mu^+\mu^-$ for $q\bar{q}h$, $\nu\nu\mu^+\mu^-$ for $\nu\bar{\nu}h$ same final state ---> difficult to suppress almost no τ events ---> "pure" same final state


Impact of Transverse Momentum Resolution

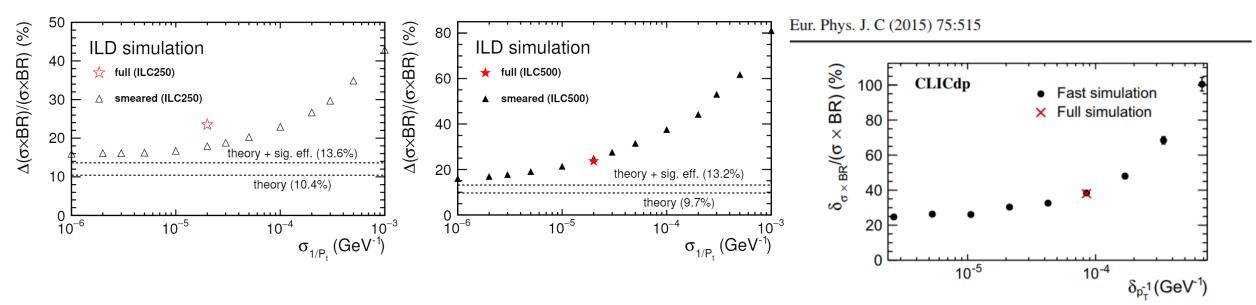
- $M_{\mu^+\mu^-}$ is most important because this is final observable to distinguish signal and background ---> measuring muon track has a crucial role ---> can be discussed with transverse momentum resolution σ_{1/P_t}
- study performed by smearing
 - assume constant number of σ_{1/P_t} (from 10⁻³ to 10⁻⁶ GeV⁻¹) with a Gaussian random number (ignore dependencies of angle/momentum), apply smearing to MC truth momentum of $h \rightarrow \mu^+\mu^-$ candidate

Results (2)

worse resolution = worse results on precision **Important to achieve ILD goal for** σ_{1/P_t}



Both cases could improve up to 10% (absolute) by better σ_{1/P_t} resolution.


no significant improvement beyond 10⁻⁵ (will be capped ~16%) medium momentum muons

---> effective resolution ~ 10^{-4}

---> important to keep or even improve resolution for medium momentum muons ---> material budget/distribution precision continues to improve down to smallest studied σ_{1/P_t} resolution high momentum muons ---> effective resolution ~ 2*10⁻⁵ ---> hard to improve, but important to keep ILD resolution ---> size, B field, point resolution, alignment SET...

Comparison with CLIC 1.4 TeV Analysis

ILC: 250/500 GeV, two final states, L/R beam polarization

CLIC: 1.4 TeV, one final state, no beam polarization

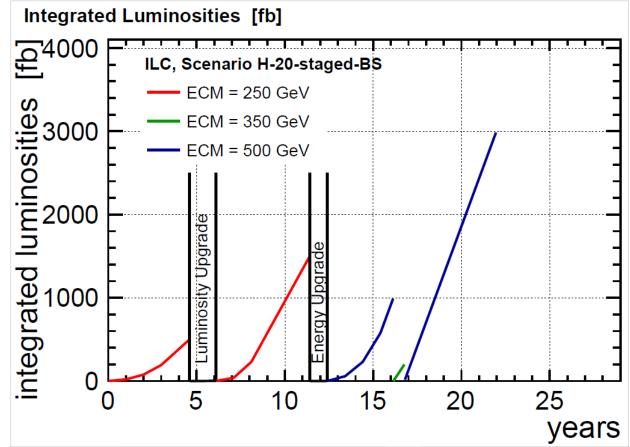
Different setups, the same conclusions.

Summary

- Precise measurements and extracting absolute Higgs couplings are possible at the ILC in a highly modelindependent way
- Studied $h \rightarrow \mu^+ \mu^-$ channel with $E_{CM} = 250/500$ GeV at the ILC • Can reach 17% combined precision for $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$
- Studied the impact of transverse momentum resolution σ_{1/P_t}
 - Important to achieve the ILD goal for σ_{1/P_t}

BACKUP

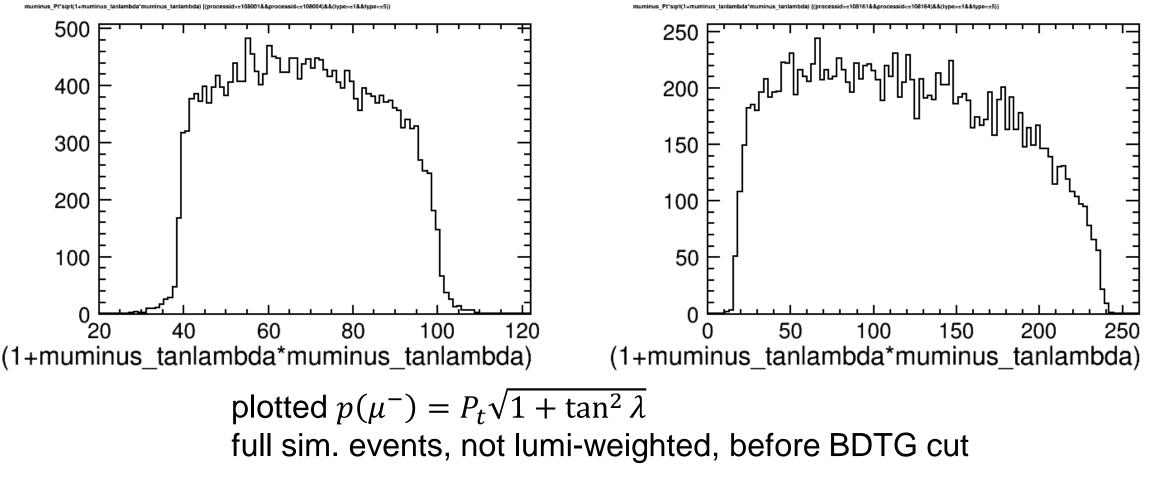
Previous Studies

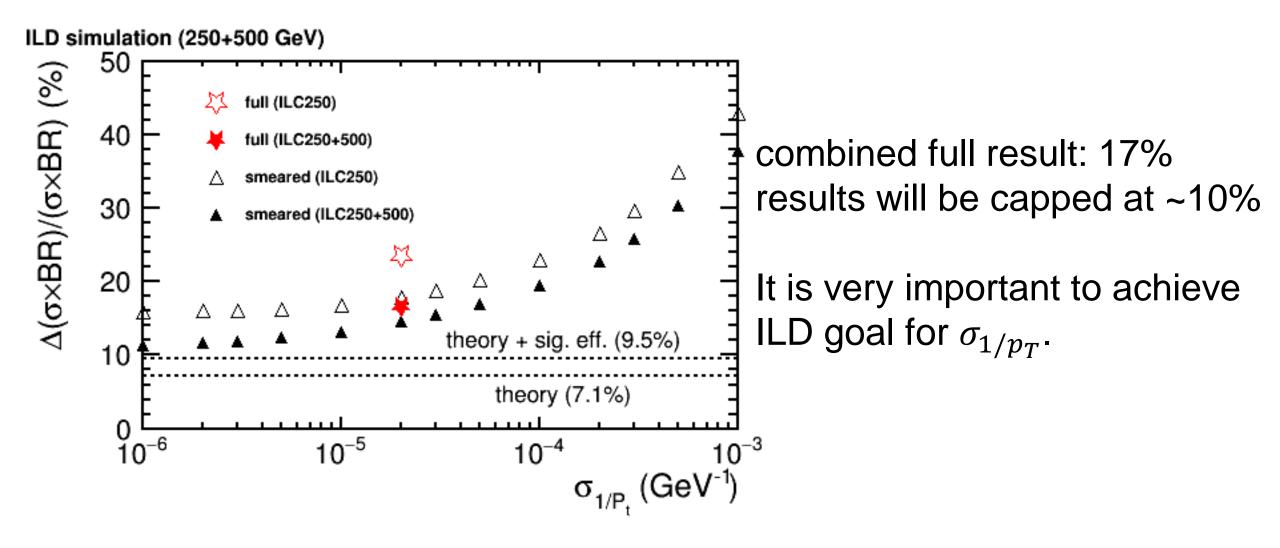

Everything performed at >= 1 TeV, or not realistic

Reference	E _{CM}	beam pol. $P(e^-, e^+)$	∫ Ldt	$\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$	comment	
LC-REP-2013-006	1 TeV	(-0.8, +0.2)	500 fb ⁻¹	44%	ILC/ILD	
arXiv:1306.6329 [hep-ex]	1 TeV	(-0.8, +0.2)	1000 fb ⁻¹	32%	ILC/SiD	
arXiv:1603.04718 [hep-ex]	1 TeV	(-0.8, +0.2)	500 fb ⁻¹	36%	ILC/ILD used TMVA	
Eur. Phys. J. C73 (2), 2290 (2013)	3 TeV	unpol.	2000 fb ⁻¹	15%	CLIC_SiD M _h = 120 GeV used TMVA	
		unpol.	1500 fb ⁻¹	38%	CLIC ILD	
Eur. Phys. J. C75 , 515 (2015)	1.4 TeV	(-0.8, 0)		25%	used TMVA	
arXiv:0911.0006 [physics.ins-det]	250 GeV	(-0.8, +0.3)	250 fb ⁻¹	91%	ILC/SiD M _h = 120 GeV	

ILC Running Scenario

optimized scenario with considering


- Higgs precise measurements
- Top physics
- New physics search
- ~20 years running with energy range [250-500] GeV, beam polarization sharing ---> then possible 1 TeV upgrade


staging running scenario

qqh500-L

Combined Results

CLIC Conclusion

• Even a large improvement of the muon momentum resolution would result in only a moderate improvement of the statistical uncertainty of the measured product of the Higgs production cross-section and the branching ratio for the $H \rightarrow \mu^+\mu^-$ decay. (EPJC (2015) 75:515)