

Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Discovering the $h \rightarrow Z\gamma$ Decay in $t\overline{t}$ Associated Production arXiv:1909.07390

Eric Madge

in collaboration with

Florian Goertz, Pedro Schwaller, and Valentin Tenorth

13th Annual Helmholtz Alliance Workshop "Physics at the Terascale"

Idea: combine $t\bar{t}h$ production with $h \to Z\gamma$ decay, use $t\bar{t}$ pair to suppress most backgrounds $(y_t \sim 1)$ But: very low cross section \implies need high luminosity \implies Projections for HL-LHC, HE-LHC and FCC_{hh}

Discovering the $h \rightarrow Z\gamma$ Decay in $t\bar{t}$ Associated Production (1909.07390)

• HL-LHC: 4.9σ significance with 3 ab^{-1} [ATL-PHYS-PUB-2018-054] • FCC_{ee}(240 GeV): $\frac{S}{\sqrt{B}} \approx 3.6$ with 10 ab^{-1} [No, Spannowsky (1612.06626)]

Here: Consider $h \to Z\gamma$, $Z \to \ell^+ \ell^-$

Analysis

Strategy: consider semi-leptonic top channel and extrapolate to fully-hadronic and fully-leptonic top decays

loosely based on $pp \to t\bar{t}h, \ h \to \gamma\gamma$ search [ATLAS-CONF-2013-080]

- exactly 3 leptons ($e \text{ or } \mu$)
- ≥ 3 jets
- \circ $p_{T,j} >$ 30 GeV for first 3 jets
- ${
 m \circ} \geq 1$ b-tagged jet
- $extsf{e} \geq 1$ photon w/ $p_{T,\gamma} > 15$ GeV
- \sim Z-reconstruction: OSSF ℓ pair w/ 76 GeV < $m_{\ell\ell}$ < 106 GeV
- ${\rm \ref{eq:higgs-reconstruction:}}$ 120 GeV $<\!m_{\gamma\ell\ell}\!<\!$ 130 GeV

Semi-Leptonic Channel at HL-LHC

 ${\rm \circ\!\!\circ}$ irreducible background: $pp \to t\bar{t}\,Z\gamma, \ \ Z \to \ell^+\ell^-$

Extrapolation to other top channels $\mathcal{B}(h \to Z\gamma) = 1.54 \cdot 10^{-3}, \quad \mathcal{B}(Z \to \ell^+ \ell^-) = 0.067$ • Signal: $\sigma(pp \to t\bar{t}h) = 613 \text{ fb} \quad (\text{at } \sqrt{s} = 14 \text{ TeV})$ $\implies \sim 190 \text{ events at HL-LHC } (3 \text{ ab}^{-1})$ • Background: $\sigma(pp \to t\bar{t}Z\gamma) = 9.3 \text{ fb}$ $\implies \sim 1870 \text{ events at HL-LHC}$

Extrapolation to other top channels

- $$\begin{split} \mathcal{B}(h \to Z\gamma) &= 1.54 \cdot 10^{-3}, \quad \mathcal{B}(Z \to \ell^+ \ell^-) = 0.067 \\ \text{e Signal:} \qquad \sigma(pp \to t\bar{t}h) = 613 \, \text{fb} \quad (\text{at } \sqrt{s} = 14 \, \text{TeV}) \\ \implies &\sim 190 \text{ events at HL-LHC } (3 \, \text{ab}^{-1}) \\ \text{e Background:} \quad \sigma(pp \to t\bar{t}Z\gamma) = 9.3 \, \text{fb} \\ \implies &\sim 1870 \text{ events at HL-LHC} \end{split}$$
 - selection efficiency from semi-leptonic top-channel:

 $\epsilon_S = 0.14, \quad \epsilon_B = 0.0097$

Extrapolation to other top channels

- $\begin{array}{ll} \mathcal{B}(h \to Z\gamma) = 1.54 \cdot 10^{-3}, & \mathcal{B}(Z \to \ell^+ \ell^-) = 0.067 \\ & \text{Signal:} & \sigma(pp \to t\bar{t}h) = 613 \, \text{fb} \quad (\text{at } \sqrt{s} = 14 \, \text{TeV}) \\ & \implies & \sim 190 \text{ events at HL-LHC } (3 \, \text{ab}^{-1}) \\ & \text{Background:} & \sigma(pp \to t\bar{t}Z\gamma) = 9.3 \, \text{fb} \\ & \implies & \sim 1870 \text{ events at HL-LHC} \end{array}$
 - selection efficiency from semi-leptonic top-channel:

 $\epsilon_S = 0.14, \quad \epsilon_B = 0.0097$

- ${\, \circ \,}$ enhance B by $50\,\%$ to account for non-simulated backgrounds
- \implies total: $S \approx 25, B \approx 27$

Extrapolation to other top channels

- $$\begin{split} \mathcal{B}(h \to Z\gamma) &= 1.54 \cdot 10^{-3}, \quad \mathcal{B}(Z \to \ell^+ \ell^-) = 0.067 \\ \text{e Signal:} \qquad \sigma(pp \to t\bar{t}h) = 613 \, \text{fb} \quad (\text{at } \sqrt{s} = 14 \, \text{TeV}) \\ \implies &\sim 190 \text{ events at HL-LHC } (3 \, \text{ab}^{-1}) \\ \text{e Background:} \quad \sigma(pp \to t\bar{t}Z\gamma) = 9.3 \, \text{fb} \\ \implies &\sim 1870 \text{ events at HL-LHC} \end{split}$$
 - selection efficiency from semi-leptonic top-channel:

 $\epsilon_S = 0.14, \quad \epsilon_B = 0.0097$

- ${\, \circ \,}$ enhance B by $50\,\%$ to account for non-simulated backgrounds
- \implies total: $S \approx 25$, $B \approx 27$

Significance
$$\frac{S}{\sqrt{B}} \approx 4.8$$
@ HL-LHC

HE-LHC and FCC_{hh} HE-LHC: 27 TeV, 15 ab^{-1}

Cut	S	B
_	4.4k	47k
Z reco.	166	1.9k
h reco.	160	101
$S \approx 556$, B	≈ 527

FCC_{hh}:
$$100 \text{ TeV}, 30 \text{ ab}^{-1}$$

Cut	S	В	
	112k	1.3M	
Z reco.	6.3k	82k	
h reco.	6.1k	3.2k	
$S \approx 21.1 \mathrm{k}, B \approx 16.8 \mathrm{k}$			

κ Framework coupling modifiers κ : $\cdots = \kappa \times$ SM: $\kappa = 1$ $\kappa_i^2 = \frac{\Gamma\left(h \to X\right)}{\Gamma\left(h \to X\right)_{\rm SM}}$ $\kappa_i^2 = \frac{\sigma \left(X \to h \right)}{\sigma \left(X \to h \right)_{\mathsf{SM}}}$ or 1.15 current bounds HL-LHC S1 1.10 -HL-LHC S2 **HE-LHC Base** HE-LHC Opt. 1.05 -1.00 0.95-0.90 -0.85 Kμ κ_v Kq Kt Kτ KZV ΚV Kb

[1902.00134]

Discovering the $h \to Z\gamma$ Decay in $t\bar{t}$ Associated Production (1909.07390)

Limits on $\kappa_{Z\gamma}$

$$N(\kappa_{Z\gamma}^2) = \kappa_{Z\gamma}^2 S + B$$

SM: $\kappa_{Z\gamma} = 1$

Exclude values of $\kappa_{Z\gamma}$ for which expected $N(\kappa_{Z\gamma}^2)$ differs from SM prediction by more than $n\sigma$.

$$\begin{split} &\text{statistics only:}\\ &\sigma^2 = N(\kappa_{Z\gamma}^2)\\ &\text{with systematics: } (\sigma_{\text{sys}} = 0.05~S)\\ &\sigma^2 = N(\kappa_{Z\gamma}^2) + \sigma_{\text{sys}}^2 \end{split}$$

Results

$$\kappa_{Z\gamma}^2 = \frac{\Gamma (h \to Z\gamma)}{\Gamma (h \to Z\gamma)_{\text{SM}}} \qquad \begin{array}{c} \text{red:} \quad \text{no systematic uncertainties} \\ \text{blue:} \quad 5 \ \% \text{ uncertainties on } S \end{array}$$

 $\kappa_{Z\gamma}$

Discovering the $h \rightarrow Z\gamma$ Decay in $t\bar{t}$ Associated Production (1909.07390)

Conclusion

- ${\rm \circ}~t\bar{t}h$ can contribute significantly to $h\to Z\gamma$ discovery at HL-LHC
- ▷ Limits on $\kappa_{Z\gamma}$ (1 σ): HL-LHC HE-LHC FCC_{hh} ~15% ~4% ~3%
- room for improvement:
 - ▶ full simulation (background, top channels, detector, ...)
 - background determination using side-bands
 - sophisticated top-tagging
 - beyond cut-and-count (shape analysis)

▶ ...

Conclusion

- \bullet $t\bar{t}h$ can contribute significantly to $h \to Z\gamma$ discovery at HL-LHC
- \sim Limits on $\kappa_{Z\gamma}$ (1 σ): HL-LHC HE-LHC FCC_{hh} $\sim 15\% \sim 4\% \sim 3\%$
- \circ Competitive to other *h* production channels / colliders: HI-IHC HE-LHC ILC [Durieux et al., 1704.02333] $\sim 10\% \sim 4\% \sim 5\%$ [Cepada et al., 1902.00134]
- room for improvement:
 - full simulation (Dackground, top child)
 background determination using side-bands
 sophisticated top-tagging
 (child carebraic)
 expect stronger limit on κ_{Zγ} / higher significance full simulation (background, top channels, detector, ...)

▶ ...

Conclusion

- \bullet $t\bar{t}h$ can contribute significantly to $h \to Z\gamma$ discovery at HL-LHC
- \sim Limits on $\kappa_{Z\gamma}$ (1 σ): HL-LHC HE-LHC FCC_{hh} $\sim 15\%$ $\sim 4\%$ $\sim 3\%$
- \bullet Competitive to other h production channels / colliders: HI-IHC HE-LHC ILC [Durieux et al., 1704.02333] $\sim 10\% \sim 4\% \sim 5\%$ [Cepada et al., 1902.00134]
- room for improvement:
 - full simulation (background, top channels, detector, ...)

 - beyond cut-and-count (shape analysis)

Thank you for your attention!

Eric Madge

▶ ...

Discovering the $h \to Z\gamma$ Decay in $t\bar{t}$ Associated Production (1909.07390)

background determination using side-bands
 sophisticated top-tagging
 sophisticated top-tagging
 k_{Zγ} / higher significance