Bilinear quark operators in $\mathrm{RI} /$ SMOM scheme at three loops

Oleg L. Veretin

University of Regensburg

November 27, 2019

outlook

- introduction
- scheme dependence in QCD
- RI/MOM, RI/SMOM schemes and the lattice matrix elements
- conversion factors from $\overline{\mathrm{MS}}$ to $\mathrm{RI} / \mathrm{SMOM}$ for scalar, vector and trensor currents
- numerical results
- conclusions

operator product expansion

- operator product expansion on the light cone

$$
J^{A}(0) J^{B}(x)^{x^{2} \rightarrow 0} \sim \sum_{n} C_{n}^{A B}\left(x^{2}\right) O_{\mu_{1} \ldots \mu_{n}} x^{\mu_{1}} \ldots x^{\mu_{n}}+\text { higher twists }
$$

- short distance coefficients $C_{n}^{A B}\left(x^{2}\right)$ are computed in perturbation theory
- long distance matrix elements $O_{\mu_{1} \ldots \mu_{n}}$ are subject to non-perturbative considerations:
- fits from experimental data
- sum rules
- lattice Monte Carlo simulations
- smth else?
- evolution of the operators $O_{\mu_{1} \ldots \mu_{n}}$ with the scale μ
\Longrightarrow anomalous dimensions
\Longrightarrow renormalization group equation
- analysis is usually done in $\overline{\mathrm{MS}}$ scheme

operators

- the following operators are of the most interest for the moments of the structure functions and the moments of light-cone distribution amplitudes
- twist 2 operators

$$
\begin{aligned}
& \mathcal{S} \bar{\psi} \gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi \\
& \mathcal{S} \bar{\psi} \gamma_{\mu_{1}} \gamma_{5}{\stackrel{\leftrightarrow}{D_{\mu}}}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi
\end{aligned}
$$

- and twist 3 operators (e.g. spin structure function $g_{2}\left(x, Q^{2}\right)$)

$$
\begin{aligned}
& \bar{\psi} \gamma_{\mu_{1}} \mathcal{S} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi \\
& \bar{\psi} \gamma_{\mu_{1}} \gamma_{5} \mathcal{S} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} \psi
\end{aligned}
$$

scheme dependence in QCD

- we distiguish between bare and renormalized quantities, e.g.

$$
\alpha_{0}=\bar{\mu}^{\varepsilon} Z_{\alpha} \alpha_{R} \quad \psi_{0}=Z_{2}^{1 / 2} \psi_{R}, \quad X_{0}=Z_{X} X_{R}, \quad X=m, \xi, O_{\Gamma}, \ldots
$$

- in MS scheme all Z 's have the form

$$
Z_{X}=1+\sum_{i>0} \frac{z_{X}^{(i)}}{\varepsilon^{i}}, \quad z_{X}^{(i)}=\sum_{j \geq i} a^{j} c_{X}^{(i, j)}, \quad a=\frac{\alpha_{s}}{4 \pi}
$$

- in momentum subtraction (MOM) scheme we require the properly chosen Green functions to be equal to their tree values at some fixed μ-dependent configurations of external momenta
- the finiteness of all renormalized parameters, fields, operators, etc. means within perturbation theory that

$$
X_{\overline{\mathrm{MS}}}(\bar{\mu})=C_{X}(\bar{\mu}, \mu, \ldots) X_{\mathrm{MOM}}(\mu), \quad X=\psi, A_{\mu}, m, O_{\Gamma}, \ldots
$$

where conversion functions C_{X} are independent on cut-offs and

$$
C_{X}=1+\sum_{i>0} a^{i} C_{X}^{(i)}(\bar{\mu}, \mu, \xi, \ldots)
$$

lattice QCD and RI-schemes

- lattice QCD provides a direct way to estimate matrix elements of local operators from first principles
- the renormalization of the operators is required in order to get finite results as the lattice cut-off $a \rightarrow 0$
- usually renormalized quantities are obtained in some appropriate renormalization scheme such as $\mathrm{RI}\left(\mathrm{RI}^{\prime}\right) /(\mathrm{S}) \mathrm{MOM}$
- on the other hand perturbative calculations in continuum QCD are conventionally done in dimensional regularization and $\overline{\mathrm{MS}}$ scheme
- matching of lattice matrix elements to those defined in a continuum perturbative scheme requires the calculation of the corresponding multiplicative conversion factors
- 3-loop SMOM $\rightarrow \overline{\mathrm{MS}}$ conversion needed to reduce the systematic uncertainty

RI/MOM

- consider Green's function of bilinear quark operator O

- by renormalization in some scheme we express bare renormalized parameters in terms of bare ones

$$
\psi_{R}=Z_{q}^{1 / 2} \psi_{0}, \quad m_{R}=Z_{m} m_{0}, \quad O_{R}=Z_{O} O_{0}
$$

- $\mathrm{RI} / \mathrm{MOM}\left(\mathrm{RI}^{\prime} / \mathrm{MOM}\right)$ schemes
$\mathrm{RI} \longrightarrow$ "regularizarion independent"

$\mathrm{RI}^{\left({ }^{(}\right)} / \mathrm{MOM}$ renormalization conditions

- in the $\mathrm{RI} / \mathrm{MOM}$ scheme the renormalization of the external fermion legs is fixed by the conditions (constant Z_{q})

$$
\begin{aligned}
& \left.\lim _{m_{R} \rightarrow 0} \frac{1}{12 m_{R}} \operatorname{Tr} S_{R}^{-1}(p)\right|_{p^{2}=-\mu^{2}}=1 \\
& \left.\lim _{m_{R} \rightarrow 0} \frac{1}{48} \operatorname{Tr} \gamma_{\nu} \frac{\partial S_{R}^{-1}(p)}{\partial p_{\nu}}\right|_{p^{2}=-\mu^{2}}=-1
\end{aligned}
$$

where $S(p)$ is the fermion propagator

- "light" version: the $\mathrm{RI}^{\prime} / \mathrm{MOM}$ scheme; Z_{q} is fixed from

$$
\left.\lim _{m_{R} \rightarrow 0} \frac{1}{12 p^{2}} \operatorname{Tr} p S_{R}^{-1}(p)\right|_{p^{2}=-\mu^{2}}=-1
$$

- additionaly we define renormalized mass as

$$
m_{0}=\left(Z_{\bar{\psi} \psi}\right)^{-1} m_{R}
$$

where

$$
(\bar{\psi} \psi)_{0}=Z_{\bar{\psi} \psi}(\bar{\psi} \psi)_{R}
$$

$\mathrm{RI}^{\left({ }^{(}\right)} / \mathrm{MOM}$ renormalization conditions

- not true renormalization schemes!
\longrightarrow need renormalization of the overall divergences
- nontrivial statment to prove is that within this framework all unrenormalized Green functions expressed in terms of α_{R}, m_{R} are cut-off independent up to some multiplicative factor, i.e.

$$
\Gamma_{0}\left(\{p\}, \alpha_{0} Z_{\alpha}, m_{0} / Z_{\bar{\psi} \psi}, \mu, \Lambda\right) Z_{\Gamma}(\Lambda, \mu)
$$

is independent of Λ as $\Lambda \rightarrow \infty$

RI/MOM vs RI/SMOM

fixing the renormalization conditions for the overall divergences

RI/MOM:
$p_{1}^{2}=p_{2}^{2}=-\mu^{2}$
$\left(p_{1}+p_{2}\right)^{2}=0$

RI/SMOM:

$$
\begin{aligned}
p_{1}^{2}=p_{2}^{2} & =-\mu^{2} \\
\left(p_{1}+p_{2}\right)^{2} & =-\mu^{2}
\end{aligned}
$$

- $\mathrm{RI}^{\left({ }^{\prime}\right)} / \mathrm{MOM}$ prescription suffers from strong sensitivity to IR effects
- dominant source of uncertainty on the lattice
- large corrections in conversion factors: e.g. for the quark the mass (Landau gauge, $\mu=2 \mathrm{GeV}, n_{f}=4, \alpha_{s} / \pi=0.1$) Chetyrkin, Retey '00

$$
m_{\overline{\mathrm{MS}}}=(1-0.13333-0.0754-0.0495) m_{\mathrm{RI} / \mathrm{MOM}}
$$

Example: NS quark-antiquark operator with two derivatives

Second Gegenbauer moment of the K-meson LCDA \ddagger
${ }^{\ddagger}$ G. S. Bali et al., [RQCD collaboration], arXiv:1903.08038

RI'-MOM $\rightarrow \overline{\text { MS }}$ matching

RI'-SMOM $\rightarrow \overline{\text { MS }}$ matching

scheme	$a_{2}^{K}(\mu=2 \mathrm{GeV})$
SMOM, 1-loop	$0.066_{-13}^{+11}(17)_{r}(13)_{a}(5)_{m}$
SMOM, 2-loop	$0.089_{-12}^{+11}(11)_{r}(11)_{a}(4)_{m}$
SMOM, 3-loop	$? ? ?$

setup

in this work we consider operators without derivatives:

- scalar $\quad J^{S}=\bar{\psi} \psi$
- vector $J_{\mu}^{V}=\bar{\psi} \gamma_{\mu} \psi$
- tensor $J_{\mu \nu}^{T}=\bar{\psi} \sigma_{\mu \nu} \psi$

formfactors

$$
\langle\bar{\psi} \psi\rangle=\delta_{i j} \Lambda^{s}, \quad\left\langle\bar{\psi} \gamma_{\mu} \psi\right\rangle=\delta_{i j} \wedge_{\mu}^{V}, \quad\left\langle\bar{\psi} \sigma_{\mu \nu} \psi\right\rangle=\delta_{i j} \Lambda_{\mu \nu}^{T}
$$

Formfactor decompositions at the symmetric point:

$$
\begin{aligned}
& \Lambda^{S}=F_{1}^{S} I-F_{2}^{S} \frac{\left[\not \phi_{1}, \not \phi_{2}\right]}{\mu^{2}} \\
& \Lambda_{\mu}^{V}=F_{1}^{V} \gamma_{\mu}+F_{2}^{V} \frac{\not \phi_{1} \gamma_{\mu} \not \phi_{1}+\not \phi_{2} \gamma_{\mu} \not \phi_{2}}{\mu^{2}}-F_{3}^{V} \frac{\not \phi_{1} \gamma_{\mu} \not \phi_{2}}{\mu^{2}}-F_{4}^{V} \frac{\not \phi_{2} \gamma_{\mu} \not \phi_{1}}{\mu^{2}} \\
& \Lambda_{\mu \nu}^{T}=F_{1}^{T} \sigma_{\mu \nu}+F_{2}^{T} \frac{\not \phi_{1} \not{ }_{2} \sigma_{\mu \nu}-\sigma_{\mu \nu} \not \phi_{2} \not \phi_{1}}{\mu^{2}}+F_{3}^{T} \frac{\not p_{1} \not \phi_{2} \sigma_{\mu \nu} \not \phi_{1} \not \phi_{2}}{\mu^{4}}
\end{aligned}
$$

$\mathrm{RI} / \mathrm{MOM}$ results at three loops

- $\mathrm{RI} / \mathrm{MOM}, \mathrm{Rl}^{\prime} / \mathrm{MOM}$ 3-loop results are known for $\mathrm{S}, \mathrm{P}, \mathrm{V}, \mathrm{A}, \mathrm{T}$ currents Chetyrkin, Retey '00
- requires evaluation of massless 3-loop diagrams of the propagator type (p-integrals)
- reduction \longrightarrow MINCER
- master integrals analytically in terms of $\zeta(\mathrm{n})$
- e.g. for the quark field and the mass tranformations we have (Landau gauge, $\mu=2 \mathrm{GeV}, n_{f}=4, \alpha_{s} / \pi=0.1$)

$$
\begin{gathered}
C_{m}^{\mathrm{RI} / \mathrm{MOM}}=1-0.13333-0.0754-0.0495 \\
C_{q}^{\mathrm{RI} / \mathrm{MOM}}=1+0.0-0.00476-0.005108 \\
m_{\overline{\mathrm{MS}}}=C_{m}^{\mathrm{RI} / \mathrm{MOM}} m_{\mathrm{RI} / \mathrm{MOM}}, \quad \psi_{\overline{\mathrm{MS}}}=C_{q}^{\mathrm{RI} / \mathrm{MOM}} \psi_{\mathrm{RI} / \mathrm{MOM}}
\end{gathered}
$$

$\mathrm{RI} /$ SMOM results at the 2-loop order

- 1-loop results
- master integrals were evaluated analytically

Usyukina, Davydychev '94 Birthwright, Glover, Marquard '04

- 2-loop results
$C_{m}^{\mathrm{RI} / \mathrm{SMOM}}=1-0.6455188 a-a^{2}\left(22.607688-4.01353947 n_{f}\right)+O\left(a^{3}\right)$
$C_{q}^{\mathrm{RI} / \mathrm{SMOM}}=C_{q}^{\mathrm{RI} / \mathrm{MOM}}$

IBP reduction of Feynman integrals

Parametrization of L-loop Feynman integrals in dimensions

$$
I_{i_{1}, i_{2}, \ldots i_{n}}=\int \frac{d k_{1} \ldots d k_{L}}{D_{1}^{i_{1}} D_{2}^{i_{2}} \ldots D_{n}^{i_{n}}}
$$

where indices i_{1}, \ldots, i_{n} can also be negative. The $\#$ of invariants D and indices i is $n=L(L+5) / 2$ where L is the number of loops.

- algebraical reduction of the large number of integrals $\left(\sim 10^{6}\right)$ with different indices to the small set of master-integrals
- it is possible to form $L(L+2)$ integration by part (IBP) relations that give linear algebraic relations between $I_{i_{1}, \ldots, i_{n}}$ with different sets of i_{1}, \ldots, i_{n}
- solution of the large system $\left(\sim 10^{6}\right)$ of linear equations over the field $\mathbb{R}[d]$
- available software packages: Reduze ([arXiv:1201.4330]), FIRE ([arXiv:1408.2372]) \longrightarrow highly optimized, parallelization

evaluation

Some usefull statistics

	\# of tops.	\# of dias.	\# of ind.	\# of ints.	\# of MIs
1-loop	1	2	3	~ 10	2
2-loop	4	33	7	$\sim 10^{3}$	8
3-loop	13	688	12	$\sim 10^{6}$	60

Evaluation of master-integrals

evaluation

Some usefull statistics

	\# of tops.	\# of dias.	\# of ind.	\# of ints.	\# of MIs
1-loop	1	2	3	~ 10	2
2-loop	4	33	7	$\sim 10^{3}$	8
3-loop	13	688	12	$\sim 10^{6}$	60

Evaluation of master-integrals

- analytical evaluation is possible via differential equations
\longrightarrow needs IBP reduction in non-symmetric kinematics
not in this work!

evaluation

Some usefull statistics

	\# of tops.	\# of dias.	\# of ind.	\# of ints.	\# of MIs
1-loop	1	2	3	~ 10	2
2-loop	4	33	7	$\sim 10^{3}$	8
3-loop	13	688	12	$\sim 10^{6}$	60

Evaluation of master-integrals

- analytical evaluation is possible via differential equations
\longrightarrow needs IBP reduction in non-symmetric kinematics
not in this work!
- numerical solution using the methods of sector decomposition ([hep-ph/0004013]):
analytical resolution of singularities and numerical integration of the residual parts
- available software: SecDec ([arXiv:1601.03982]), FIESTA ([arXiv:1511.03614]) \longrightarrow parallelization!

Feynman parametrization

$$
l_{a_{1}, a_{2}, \ldots a_{n}}=\int \frac{d k_{1} \ldots d k_{L}}{D_{1}^{D_{1} D_{2}^{a_{2}} \ldots D_{n}^{a^{3}}},}
$$

Feynman parameters representation

$$
I_{a_{1}, \ldots, a_{n}}=\frac{\Gamma(a-L d / 2)}{\prod_{j=1}^{n} \Gamma\left(a_{j}\right)} \int_{[1,0]^{n}} \frac{D^{n-(L+1) d / 2}}{F^{n-L d / 2}} \prod x_{j}^{a_{j}-1} \delta\left(1-\sum x_{j}\right)
$$

In our case (euclidean kinematics) F and D are polynoms of x_{1}, \ldots, x_{n}

- positive definite
- never become zero inside the hypercube $[0,1]^{n}$
- the only singularities can occur when some of x 's go to 0

resolution of singularities (sector decomposition I)

2-dimensional example:

$$
\int_{[0,1]^{2}} \frac{\phi\left(x_{1}, x_{2}\right)}{\left(x_{1}+x_{2}\right)^{\gamma}} \quad \int_{[0,1]^{2}} \frac{\phi\left(x_{1} x_{2}, x_{2}\right)}{x_{2}^{\gamma-1}\left(1+x_{1}\right)^{\gamma}}
$$

$$
\int_{[0,1]^{2}} \frac{\phi\left(x_{1}, x_{1} x_{2}\right)}{x_{1}^{\gamma-1}\left(1+x_{2}\right)^{\gamma}}
$$

resolution of singularities (sector decomposition II)

- in practice we have n-fold (up to $n=9$) integrals
- e.g. in case of non-planar topology we have:

$$
\int_{[0,1]^{9}} \frac{\phi\left(x_{1}, \ldots, x_{9}\right)}{\left(x_{1} x_{2} x_{4} x_{6}+x_{1} x_{3} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{6}+383 \text { other terms }\right)^{\gamma}}
$$

resolution of singularities (sector decomposition II)

- in practice we have n-fold (up to $n=9$) integrals
- e.g. in case of non-planar topology we have:

$$
\int_{[0,1]^{9}} \frac{\phi\left(x_{1}, \ldots, x_{9}\right)}{\left(x_{1} x_{2} x_{4} x_{6}+x_{1} x_{3} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{6}+383 \text { other terms }\right)^{\gamma}}
$$

- recurrsively applying SD we get a lot of integrals of the form

$$
\begin{equation*}
\int_{[0,1]^{n}} \frac{\phi(\ldots)}{x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{p}^{a_{p}}(1+\text { very long polynom })^{\gamma}} \tag{*}
\end{equation*}
$$

resolution of singularities (sector decomposition II)

- in practice we have n-fold (up to $n=9$) integrals
- e.g. in case of non-planar topology we have:

$$
\int_{[0,1]^{9}} \frac{\phi\left(x_{1}, \ldots, x_{9}\right)}{\left(x_{1} x_{2} x_{4} x_{6}+x_{1} x_{3} x_{4} x_{6}+x_{2} x_{3} x_{4} x_{6}+383 \text { other terms }\right)^{\gamma}}
$$

- recurrsively applying SD we get a lot of integrals of the form

$$
\begin{equation*}
\int_{[0,1]^{n}} \frac{\phi(\ldots)}{x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{p}^{a_{p}}(1+\text { very long polynom })^{\gamma}} \tag{*}
\end{equation*}
$$

- in the worst case one can get n ! sector integrals (at 3-loops this would lead to $9!=362880$)
- however in practice we have typically few hunderts of sectors (recurrsive algorithm stops earlier)
- numerical evaluation with Monte Carlo methods

(quasi) ε-finite basis

- the choice of MI's is not unique: any M linear independent integrals can be chosen as a basis $\tilde{\mathcal{M}}_{i}$

$$
\text { amplitude }=\sum_{i=1}^{M} \tilde{c}_{i}(d) \tilde{\mathcal{M}}_{i}, \quad d=4-2 \varepsilon
$$

- if all $\tilde{c}_{i}(d)$ are finite as $d \rightarrow 4$ then we have ε-finite basis
- if no restrictions are imposed on MI's ε-finite basis can be constructed

(quasi) ε-finite basis

- the choice of MI's is not unique: any M linear independent integrals can be chosen as a basis $\tilde{\mathcal{M}}_{i}$

$$
\text { amplitude }=\sum_{i=1}^{M} \tilde{c}_{i}(d) \tilde{\mathcal{M}}_{i}, \quad d=4-2 \varepsilon
$$

- if all $\tilde{c}_{i}(d)$ are finite as $d \rightarrow 4$ then we have ε-finite basis
- if no restrictions are imposed on MI's ε-finite basis can be constructed

Algorithm to construct ε-finite basis

(1) Initialize basis $\{\mathcal{B}\}=\{\mathcal{M}\}$
(2) Find some int. $\mathcal{I}=\sum_{i=1}^{M} r_{i}(d) \mathcal{B}_{i}$, where $r_{k}(d)$ has max. power of $1 / \varepsilon$ (3) Then set new basis as $\{\mathcal{B}\} \longrightarrow\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{k-1}, \mathcal{I}, \mathcal{B}_{k+1}, \ldots, \mathcal{B}_{M}\right\}$
(4) Repeat (2) (3) until you can find \mathcal{I} with singular coeffient

combaining all together

- IBP reduction with FIRE5
$\Longrightarrow(1,4,13)$ reduction tables in $(1,2,3)$-loops $(\sim 700 \mathrm{MB})$
- master integrals evaluation, sector decomposition with FIESTA4 MC integration with Vegas (dimension up to 9 , \# of calls 10^{8}) \Longrightarrow aim at relative precision 10^{-8} in master integrals (but actually rel. prec. 10^{-6} is reached) TODO: try different integration algorithms
- construction of (quasi) ε-finite basis
$\Longrightarrow \varepsilon$-finite bases in (1,2)-loops
\Longrightarrow (quasi) ε-finite bases in 3 -loops: maximal pole $1 / \varepsilon^{1}$
TODO: ε-finite basis in 3-loops
- renormalization

cancellation of ε-poles

Renormalized $O\left(\alpha_{s}^{3}\right)$ contribution to the vector current matrix element (coefficient in front of $\left(\alpha_{s} /(4 \pi)\right)^{3}, N_{c}=3$)

expansion in ε	value (old basis)
$1 / \varepsilon^{6}$	0.0002 ± 0.0012
$1 / \varepsilon^{5}$	0.001 ± 0.014
$1 / \varepsilon^{4}$	0.008 ± 0.080
$1 / \varepsilon^{3}$	0.01 ± 0.36
$1 / \varepsilon^{2}$	0.1 ± 2.1
$1 / \varepsilon^{1}$	0.2 ± 11.3
$O(1)$	67 ± 59

- poles $1 / \varepsilon^{6,5,4}$ are spurious
\longrightarrow should be exactly zero even before any renormalization
- poles $1 / \varepsilon^{3,2,1}$ should be zero (renormalized!)

cancellation of ε-poles

Renormalized $O\left(\alpha_{s}^{3}\right)$ contribution to the vector current matrix element (coefficient in front of $\left(\alpha_{s} /(4 \pi)\right)^{3}, N_{c}=3$)

expansion in ε	value (old basis)	value (new basis)
$1 / \varepsilon^{6}$	0.0002 ± 0.0012	0
$1 / \varepsilon^{5}$	0.001 ± 0.014	0
$1 / \varepsilon^{4}$	0.008 ± 0.080	0
$1 / \varepsilon^{3}$	0.01 ± 0.36	0.0001 ± 0.0001
$1 / \varepsilon^{2}$	0.1 ± 2.1	0.0005 ± 0.0021
$1 / \varepsilon^{1}$	0.2 ± 11.3	0.005 ± 0.014
$O(1)$	67 ± 59	70.55 ± 0.11

- poles $1 / \varepsilon^{6,5,4}$ are spurious
\longrightarrow should be exactly zero even before any renormalization
- poles $1 / \varepsilon^{3,2,1}$ should be zero (renormalized!)

results for the formfactors in $\overline{\mathrm{MS}}$ scheme

for $S U(3)$ we have in Landau gauge $\left(a=\alpha_{s} /(4 \pi)\right)$:

$$
\begin{aligned}
F_{1}^{S} & =1+0.645519 a+a^{2}\left(48.4885-6.34686 n_{f}\right) \\
& +a^{3}\left(2396.22(25)-417.877(2) n_{f}+8.6454(6) n_{f}^{2}\right) \\
& +O\left(a^{4}\right) \\
F_{1}^{V} & =1-1.04174 a+a^{2}\left(-9.51764-0.134112 n_{f}\right) \\
& +a^{3}\left(70.55(11)-29.638(7) n_{f}^{2}+1.4762(1) n_{f}^{2}\right) \\
& +O\left(a^{4}\right) \\
F_{1}^{T} & =1-0.138749 a+a^{2}\left(-17.4648+1.68503 n_{f}\right) \\
& +a^{3}\left(-474.565(61)+60.854(8) n_{f}-0.4856(3) n_{f}^{2}\right) \\
& +O\left(a^{4}\right)
\end{aligned}
$$

3-loop RI/SMOM conversion for the mass

Conversion factor for the mass in Landau gauge ($a=\alpha_{s} /(4 \pi)$):

$$
m_{R}^{\overline{\mathrm{MS}}}=C_{m}^{\mathrm{RI} / \mathrm{SMOM}} m_{R}^{\mathrm{RI} / \mathrm{SMOM}}
$$

$$
\begin{aligned}
C_{m}^{\mathrm{RI} / \mathrm{SMOM}} & =1 \\
& -a(0.6455188) \\
& -a^{2}\left(22.607688-4.01353947 n_{f}\right) \\
& -a^{3}\left(860.34(25)-164.747(25) n_{f}+2.1845(6) n_{f}^{2}\right) \\
& +O\left(a^{4}\right)
\end{aligned}
$$

3-loop RI/SMOM conversion for the mass

Conversion factor for the mass in Landau gauge ($a=\alpha_{s} /(4 \pi)$):

$$
m_{R}^{\overline{\mathrm{MS}}}=C_{m}^{\mathrm{RI} / \mathrm{SMOM}} m_{R}^{\mathrm{RI} / \mathrm{SMOM}}
$$

$$
\begin{aligned}
C_{m}^{\mathrm{RI} / \mathrm{SMOM}} & =1 \\
& -a(0.6455188) \\
& -a^{2}\left(22.607688-4.01353947 n_{f}\right) \\
& -a^{3}\left(860.34(25)-164.747(25) n_{f}+2.1845(6) n_{f}^{2}\right) \\
& +O\left(a^{4}\right)
\end{aligned}
$$

for $n_{f}=3$ and $\alpha_{s} / \pi \sim 0.1$ (corresp. approx. to the value at scale 2 GeV)

$$
\text { 1. }-0.0161-0.0066-0.0060+\ldots
$$

conclusions

- we establish the framework for the evaluation of bilinear quark operators in $\mathrm{RI} / \mathrm{SMOM}$ scheme up to three loops
- the 3-loop matrix elements and the anomalous dimensions are obtained for the scalar, vector and tensor currents
- conversion factors for the mass $C_{m}^{\mathrm{RI} / \mathrm{SMOM}}$, quark field $C_{q}^{\mathrm{RI} / \mathrm{SMOM}}$ and tensor structure $C_{T}^{\mathrm{RI} / \mathrm{SMOM}}$ are obtained at the 3-loop order

