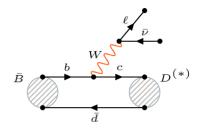
Flavor anomalies in $b\to c\tau\nu$ transitions

Ivan Nišandžić

Institute for Theoretical Particle Physics Karlsruhe Institute of Technology

Physics at the Terascale DESY, 26 November 2019

Based on arXiv:1811.09603,1905.08253, in collaboration with Monika Blanke, Andreas Crivellin, Stefan de Boer, Marta Moscati, Teppei Kitahara and Ulrich Nierste.



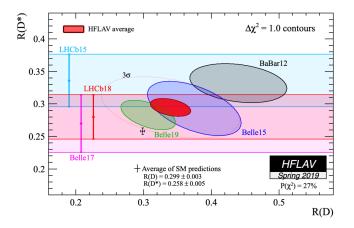
- Tree-level W-mediated transitions (within SM) with relatively large $BR \sim 1\text{-}2\%$
- Theoretical uncertainties from form factors (FF) under control
- Original motivation: τ -modes sensitive to charged Higgs contributions within a Two-Higgs-Doublet-Model (2HDM)
- Could also be affected by other new intermediate heavy particles (such as a W'-boson or a leptoquark)
- Anticipation of precise measurements by collaborations Belle II and LHCb

- Theory predictions for individual modes (e, μ , τ) involve FF uncertainties and the parametric uncertainty from V_{cb}
- Introduce the ratios to cancel (significantly reduce) V_{cb} (FF uncertainties)

$$\mathcal{R}(D) \equiv \frac{BR(B \to D\tau\nu)}{BR(B \to D\ell\nu)}, \quad \mathcal{R}(D^*) \equiv \frac{BR(B \to D^*\tau\nu)}{BR(B \to D^*\ell\nu)} \qquad (\ell = e, \mu).$$

- Probe of beyond the Standard Model (BSM) sources of lepton flavor universality violation
- Measured values deviate from the SM expectations

Summary of current theoretical/experimental status



New result by Belle 2019 (in green)

New global average HFLAV

$$\label{eq:R} \begin{split} \mathcal{R}(D) &= 0.340 \pm 0.027 \pm 0.013, \quad \mathcal{R}(D^*) = 0.295 \pm 0.011 \pm 0.008\,, \\ \rho &= -0.38\,. \end{split}$$

- Compared to the SM values (HFLAV 2018 average) $\mathcal{R}_{SM}(D) = 0.299 \pm 0.003, \quad \mathcal{R}_{SM}(D^*) = 0.258 \pm 0.005$
- Including all observables $\mathcal{R}(D^{(*)}), F_L(D^*), P_\tau(D^*)$ we find current discrepancy w.r.t SM at level of $\sim 3.3\sigma$

- An interesting deviation from the SM
- New physics modifying these ratios needs to compete with tree-level exchange of W-boson (Scale Λ_{NP} up to $\mathcal{O}(1 \text{ TeV})$)
- Heavy (charged) mediators integrated out ($\Lambda_{NP} \gg m_b$). Effective description:

$$\mathcal{H}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \left[(1+C_V^L) O_V^L + C_S^R O_S^R + C_S^L O_S^L + C_T O_T \right]$$

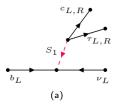
with dimension-6 four-fermion operators:

$$O_V^L = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau})$$
$$O_S^R = (\bar{c}P_Rb)(\bar{\tau}P_L\nu_{\tau})$$
$$O_S^L = (\bar{c}P_Lb)(\bar{\tau}P_L\nu_{\tau})$$
$$O_T = (\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau})$$

• We do not consider $(\bar{c}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau})$ - does not appear in dimension-six SM-invariant eff. theory

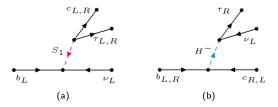
Ivan Nišandžić (KIT)

• We consider combinations of Wilson coefficients that could result from exchange of a single heavy intermediate state:

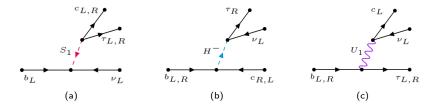


(a) real $(C_V^L, C_S^L = -4C_T)$ - scalar leptoquark $S_1(3, 1, -1/3)$

• In this talk focus on two-parameter scenarios. Consider combinations of Wilson coefficients that result from exchange of a single heavy intermediate state:



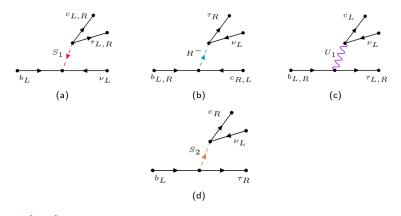
(a) real (C_V^L , $C_S^L = -4C_T$) - scalar leptoquark $S_1(3, 1, -1/3)$ (b) real (C_S^R , C_S^L) - charged Higgs In this talk focus on two-parameter scenarios. Consider combinations of Wilson coefficients that result from exchange of a single heavy intermediate state:



(a) real $(C_V^L, C_S^L = -4C_T)$ - scalar leptoquark $S_1(3, 1, -1/3)$ (b) real (C_S^R, C_S^L) - charged Higgs (c) real (C_V^L, C_S^R) - vector leptoquark $U_1(3, 1, 2/3)$

Scenarios

 In this talk focus on two-parameter scenarios. Consider combinations of Wilson coefficients that result from exchange of a single heavy intermediate state:



(a) real $(C_V^L, C_S^L = -4C_T)$ - scalar leptoquark $S_1(3, 1, -1/3)$ (b) real (C_S^R, C_S^L) - charged Higgs (c) real (C_V^L, C_S^R) - vector leptoquark $U_1(3, 1, 2/3)$ (d) $\operatorname{Re}[C_S^L = 4C_T]$, $\operatorname{Im}[C_S^L = 4C_T]$ - scalar leptoquark $S_2(3, 2, 7/6)$

Ivan Nišandžić (KIT)

Terascale 2019

Perform fits for the Wilson coefficients of the four scenarios using the measured observables as inputs

• In addition to $\mathcal{R}(D^{(*)})$ we use τ -polarization asymmetry in $B \to D^* \tau \nu$

$$P_{\tau}(D^*) \equiv \frac{\Gamma(B \to D^* \tau^{\lambda = +1/2} \nu) - \Gamma(B \to D^* \tau^{\lambda = -1/2} \nu)}{\Gamma(B \to D^* \tau \nu)}$$

with λ denoting $\tau\text{-helicity}$

 $P_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$. (Belle 2016)

Presently does not constrain NP scenarios.

New: Longitudinal D^* -polarization fractions in $B \rightarrow D^* \tau \nu$

$$F_L(D^*) = \frac{\Gamma(B \to D_L^* \tau \nu)}{\Gamma(B \to D^* \tau \nu)}$$

 $F_L(D^*) = 0.60 \pm 0.08 \pm 0.035$ (Belle, 2018)

consistent with SM value:

 $F_L(D^*)_{\rm SM} = 0.46 \pm 0.04$

at 1.5σ , but nonetheless helps to favor some of the NP scenarios over others Use the results of the fits to predict the yet unmeasured baryonic ratio:

$$\mathcal{R}(\Lambda_c) \equiv \frac{BR(\Lambda_b \to \Lambda_c \tau \nu)}{BR(\Lambda_b \to \Lambda_c \ell \nu)}, \qquad (\ell = e, \mu)$$

and τ -polarization in $B \rightarrow D\tau\nu$.

- Charged Higgs explanation under pressure from B_c -lifetime that constraints yet unmeasured $BR(B_c \rightarrow \tau \nu)$
- $B_c \to \tau \nu$ is affected by the same pseudoscalar Wilson coefficient $C_S^R C_S^L$ that enters $\mathcal{R}(D^*)$
- Total width $\Gamma_{tot}(B_c)$ known from measured lifetime and $\Gamma(B_c \to \tau \nu) = \Gamma_{tot} \times BR(B_c \to \tau \nu)$
- Within a charged Higgs scenario, $\mathcal{R}(D^*)$ data compatible only with excessive enhancement of $BR(B_c \to \tau \nu)$ over its SM-value Alonso, Grinstein, Martin Camalich (2015)

$B_c \to \tau \nu$

- An upper bound $BR(B_c \to \tau \nu) < 10\%$ inferred from non-observation of $Z \to b\bar{b}[B_c \to \tau \nu]$ at LEP Akeroyd, Chen 2017
- The extraction of that bound used the estimate of the ratio f_c/f_u of $b \to B_c$ and $b \to B_u$ hadronization probabilities from *pp*-data using:

$$R \equiv \frac{f_c}{f_u} \frac{BR(B_c^- \to J/\psi\pi^-)}{BR(B^- \to J/\psi K^-)}$$

 $R = (4.8 \pm 0.5 \pm 0.6) \cdot 10^{-3}$ with $p_T > 15 \,\text{GeV}$ (CMS 2014)

 $R = (6.83 \pm 0.18 \pm 0.09) \cdot 10^{-3}$ with $0 < p_T < 20 \,\text{GeV}$ (LHCb 2014)

- Fragmentation functions depends on kinematics. Besides, *pp*-collisions produce *B_c* through mechanisms that have no counterpart in *Z*-decays.
- The extraction of 30%-bound by Alonso, Grinstein, Martin Camalich (2015) using the theoretical predictions of $\Gamma(B_c)$ from Beneke, Buchalla (1996)
- The latter results are very sensitive to the value of charm quark mass. The B_c -bound is not settled.
- We chose three hard constraints in our analysis: $BR(B_c \rightarrow \tau \nu) < 10\%$, $BR(B_c \rightarrow \tau \nu) < 30\%$, $BR(B_c \rightarrow \tau \nu) < 60\%$

Ivan Nišandžić (KIT)

- \bullet Concerning one-dimensional fit scenarios motivated by a single particle mediators, only C_V^L gives good fit
- Including the new result, best fit point $C_V^L \sim 0.07~(p_{val} \sim 40\%)$, with $F_L(D^*) = F_{L,SM}(D^*)$
- Impact of the choice of the limit of $BR(B_c \to \tau \nu)$ on these scenarios is limited. Only C_S^R , that does not give good fit anyway, is slightly affected

Compare the two scenarios $C_V^L, C_S^L = -4C_T$ (from leptoquark S_1) and $C_S^{L,R}$ (from charged Higgs)

2D hyp.	best-fit	p-value percent	pull _{SM}	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
$(C_V^L, C_S^L = -4C_T)$	(0.10, -0.04)	29.8	3.6	0.333 -0.2 σ	$0.297 \\ +0.2 \sigma$	0.47 -1.5 σ	$-0.48 \\ -0.2 \sigma$	0.25	0.38
$\left(C^R_S,C^L_S\right)\big _{60\%}$	(0.29, -0.25) (-0.16, -0.69)	75.7	3.9	0.338 +0.1 σ	0.297 +0.2 σ	0.54 -0.7 σ	$^{-0.27}_{+0.2 \sigma}$	0.39	0.38
$\left(C_S^R, C_S^L\right)\Big _{30\%}$	(0.21, -0.15) (-0.26, -0.61)	30.9	3.6	$0.353 + 0.4 \sigma$	0.280 -1.1 σ	0.51 -1.0 σ	-0.35 0.0 σ	0.42	0.37
$\left(C_S^R, C_S^L\right)\Big _{10\%}$	(0.11, -0.04) (-0.37, -0.51)	2.6	2.9	$0.366 + 0.9 \sigma$	0.263 -2.3 σ	0.48 -1.4 σ	$-0.44 \\ -0.1 \sigma$	0.44	0.36

- S_1 performs well, with F_L and the predicted value of $P_{\tau}(D^*)$ SM-like
- F_L favors charged-Higgs solution
- If this scenario is true then either $\mathcal{R}(D^*)$ will go down towards its SM value or $BR(B_c\to\tau\nu)\gtrsim 30\%$

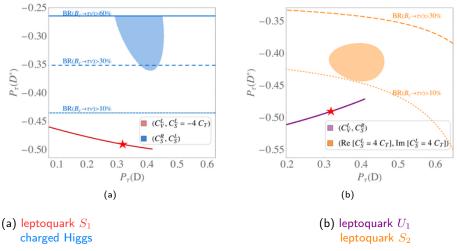
Compare the two scenarios C_V^L, C_S^R (from leptoquark U_1) and $C_S^L = 4C_T$ complex from leptoquark S_2 :

2D hyp.	best-fit	p-value percent	pull _{SM}	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$F_L(D^*)$	$P_{\tau}(D^*)$	$P_{\tau}(D)$	$\mathcal{R}(\Lambda_c)$
(C_V^L, C_S^R)	(0.08, -0.01)	26.6	3.6	0.343 +0.1 σ	0.294 -0.1 σ	0.46 -1.6 σ	-0.49 -0.2σ	0.31	0.38
$(\text{Re}[C_S^L = 4C_T], \text{Im}[C_S^L = 4C_T]) _{60,30\%}$	$(-0.06, \pm 0.31)$	25.0	3.6	0.339 0.0 σ	0.295 0.0 σ	0.45 -1.7 σ	-0.41 -0.1σ	0.41	0.38
$(\text{Re}[C_S^L = 4C_T], \text{Im}[C_S^L = 4C_T])\Big _{10\%}$	$(-0.03, \pm 0.24)$	5.9	3.2	0.330 -0.3 σ	0.275 -1.4 σ	0.46 -1.6 σ	-0.45 -0.1σ	0.38	0.36

- Collider constraints on $b \to c\tau\nu$ operators from high p_T tails in monotau searches Greljo, Martin Camalich, Ruiz-Álvarez 2018
- The constraints cut out a slice of the 2σ region for the scenario $C_S^L = 4C_T$ complex

Correlations between observables

Use the results of the fits to predict correlations between observables for different scenarios, e.g.

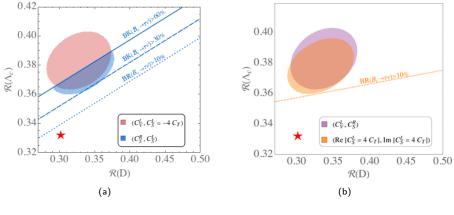


Regions on the plots from 1σ ranges of the Wilson coefficients

Ivan Nišandžić (KIT)

Terascale 2019

Correlations involving $\mathcal{R}(\Lambda_c)$



(a) leptoquark S₁ charged Higgs (b) leptoquark U_1 leptoquark S_2

- In fact, in all scenarios with good p-values the $\mathcal{R}(\Lambda_c)$ has essentially the same value
- Inspecting the formulas for the observables in terms of Wilson coefficients we find a sum-rule:

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} = 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}^{\rm SM}(D^*)} + x$$

The remainder x is function of Wilson coefficients C_i^j - stays small |x| < 0.05 for C_i^j in their 1σ ranges

For the current data (including new Belle result):

 $\mathcal{R}(\Lambda_c) = \mathcal{R}(\Lambda_c)_{\mathsf{SM}}(1.14 \pm 0.06)$ $= 0.38 \pm 0.01_{\mathsf{exp}} \pm 0.01_{\mathsf{th}}$

in any model of NP

- All possible new physics in all possible observables of $b \rightarrow c\tau\nu$ decays can be parametrized in terms of four complex coefficients C_V^L, C_S^R, C_S^L, C_T
- Charged-Higgs scenario (with non-zero $C_S^{L,R}$) is not ruled out yet
- Scalar leptoquark S_1 and vector LQ U_1 provide good fits
- Measurements of polarization observables could differentiate between scenarios.
- $\mathcal{R}(\Lambda_c)$ is important 'redundant' observable whose measurement could provide a crosscheck of the anomaly

Backup slide

