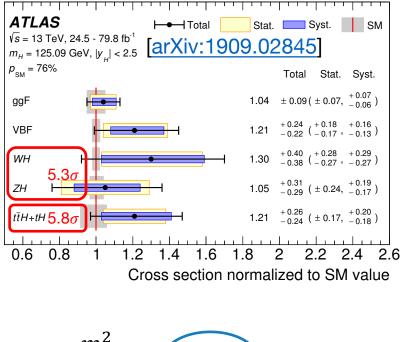
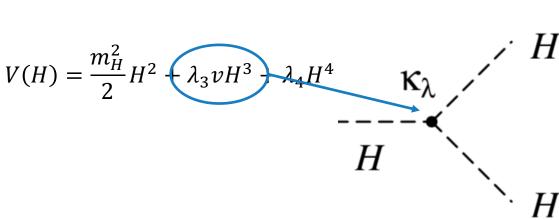
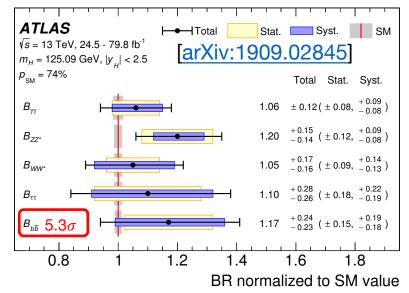


Constraining the Higgs boson selfcoupling from single-Higgs and the combination of single-Higgs and double-Higgs

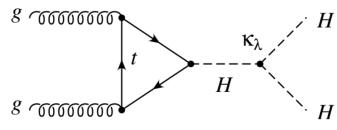

> Kunlin Ran^{1,2} ¹IHEP, CAS, ²DESY

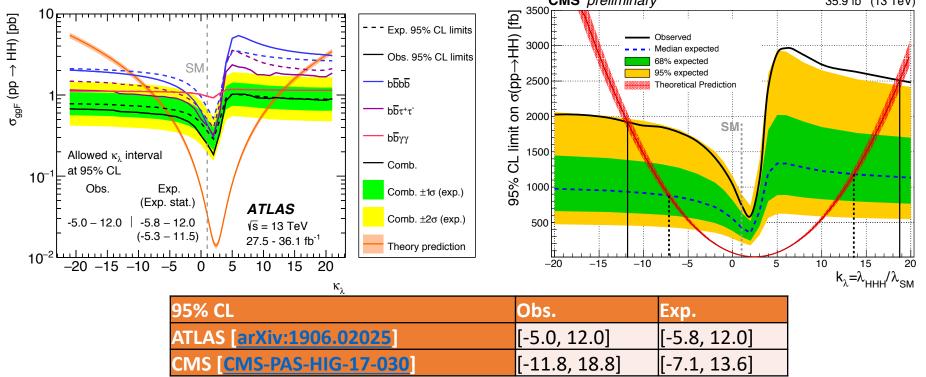

13th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"


- Constraints on the Higgs self-coupling from the single-Higgs analyses
- Constraints on the Higgs self-coupling from the combination of the single-Higgs and double-Higgs analyses

Introduction

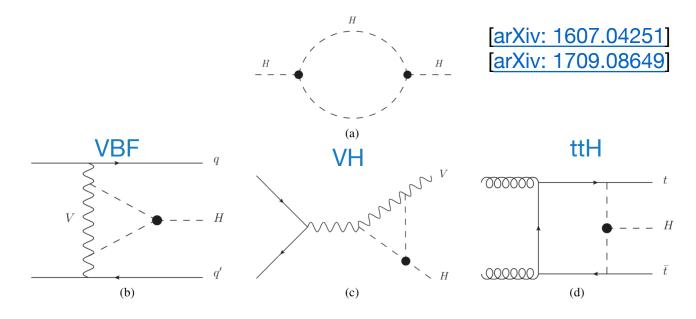
- During Run2 data taking, the Higgs production processes and decays have been measured with an increasing precision
 - VH, ttH; $H \rightarrow bb$ were discovered during Run2



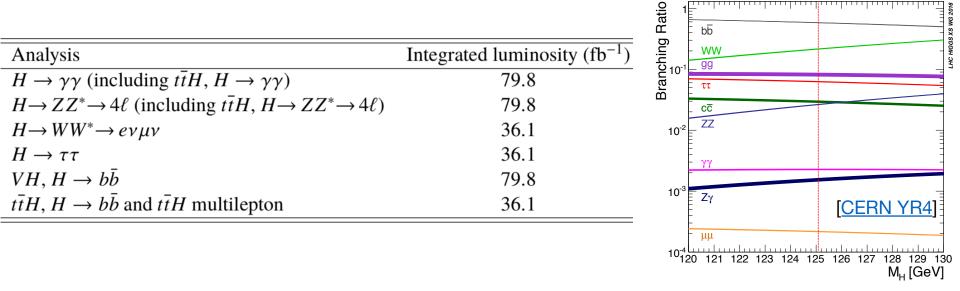

• The properties of the Higgs scalar potential, in particular the Higgs boson self-coupling, are still largely unconstrained

Latest results in the HH measurement

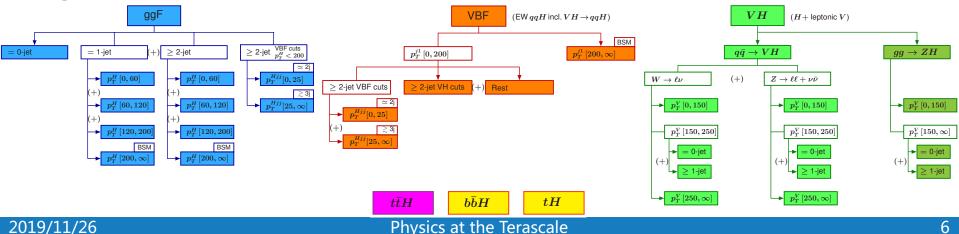
• The non-resonant HH production processes (ggF) provide a unique chance to probe $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ with direct measurements



• Constrain the κ_{λ} by estimating the upper limits of the HH production (assuming SM H decay) with CLs approach (MS preliminary 35.9 fb⁻¹ (13 TeV)


Indirect measurement in the single-H

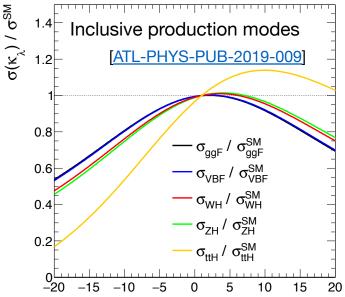
- Single Higgs processes do not depend on λ_{HHH} at LO, while its contributions need to be taken into account for the complete NLO EWK corrections
- λ_{HHH} contributes via Higgs self energy loop corrections and additional diagrams



- An indirect constraint on λ_{HHH} can be extracted by comparing the single-Higgs measured results and the SM predictions corrected for the λ_{HHH} -dependent NLO EW effects
 - Signal strength: $\mu_{if}(\kappa_{\lambda}) = \mu_i(\kappa_{\lambda}) \times \mu_f(\kappa_{\lambda}) \equiv \frac{\sigma_i(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_f(\kappa_{\lambda})}{BR_{SM,f}}$

Data and input measurement

- Higgs couplings measurements separate production processes and kinematic regions using the simplified template cross section (STXS) framework, <u>YR4</u>
- The analysis categories are designed to maximize the sensitivity to each truth-level region defined within the framework



Theoretical model: production mode

$$\mu_i(\kappa_{\lambda},\kappa_i) = \frac{\sigma^{BSM}}{\sigma^{SM}} = Z_H^{BSM}(\kappa_{\lambda}) \left[\kappa_i^2 + \frac{(\kappa_{\lambda} - 1)C_1^i}{K_{EW}^i} \right]$$
$$Z_H^{BSM}(\kappa_{\lambda}) = \frac{1}{1 - (\kappa_{\lambda}^2 - 1)\delta Z_H}, \ \delta Z_H = -1.536 \times 10^{-3}$$

- $K_{EW}^{i} = \frac{\sigma_{NLO}^{SM,i}}{\sigma_{LO}^{SM,i}}$: Complete NLO EW correction for the production
- C_1^i : process and kinematics-dependent linear coefficient that provides the sensitivity of the measurement to κ_{λ}
- $\kappa_i^2 = \frac{\sigma_{LO,i}^{BSM}}{\sigma_{LO,i}^{SM}}$: Modifiers to other Higgs boson couplings in the κ -framework
 - Only κ_F (all fermions) and κ_V (all weak vector bosons) are considered

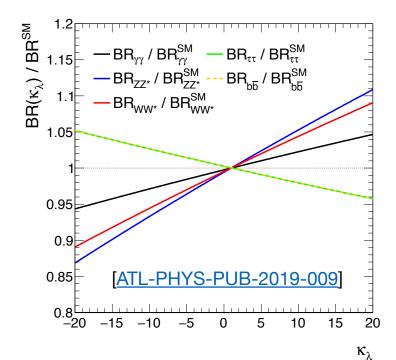
	arXiv: 1607.04251 arXiv: 1709.08649							
:	production mode	ggF	VBF	ZH	WH	tīH		
inclus	sive $C_1^i \times 100$	0.66	0.63	1.19	1.03	3.52		
	$K^i_{ m EW}$	1.049	0.932	0.947	0.93	1.014		
	κ_i^2	κ_F^2	κ_V^2	κ_V^2	κ_V^2	κ_F^2		

-

κ

Theoretical model: decay rate

Higgs boson decay rates

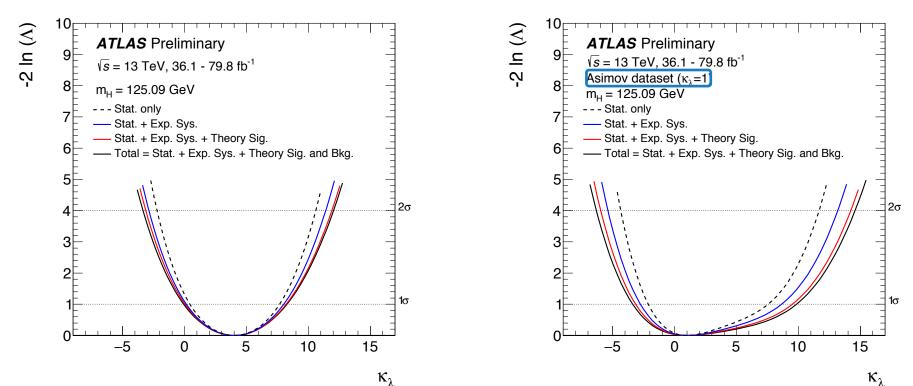

arXiv: 1607.04251

<u>arXiv: 1709.08649</u>

$$\mu_f(\kappa_{\lambda},\kappa_f) = \frac{BR_f^{BSM}}{BR_f^{SM}} = \frac{\kappa_f^2 + (\kappa_{\lambda} - 1)C_1^f}{\sum_j BR_j^{SM} [\kappa_j^2 + (\kappa_{\lambda} - 1)C_1^j]}$$

• C_1^f : linear coefficient provides the sensitivity to κ_{λ}

decay mode	$H \rightarrow \gamma \gamma$	$H \to WW^*$	$H \rightarrow ZZ^*$	$H \to b \bar{b}$	$H \rightarrow \tau \tau$
$C_1^f \times 100$	0.49	0.73	0.82	0	0
κ_f^2	$1.59\kappa_V^2 + 0.07\kappa_F^2 - 0.67\kappa_V\kappa_F$	κ_V^2	κ_V^2	κ_F^2	κ_F^2

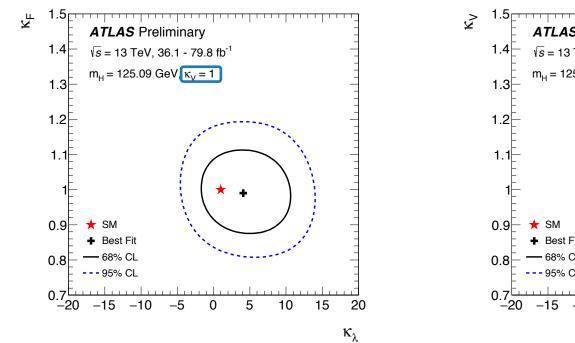

Kinematic dependence of κ_{λ}

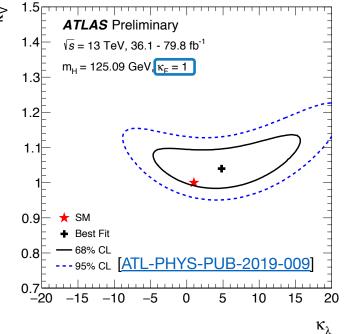
- A more differential description (i.e STXS w.r.t the inclusive production processes) of the dependence on κ_{λ} can help
 - To reduce the potential bias on the determination of κ_{λ}
 - To further increase the sensitivity to κ_{λ}

- The dependence is considered by exploiting cross-sections in the STXS stage-1 framework
- The analysis estimated dependence in the VBF, ZH and WH
 - Re-deriving the kinematic dependent coefficients C_1^i in stage 1 truth bins
- Differential κ_{λ} corrections are not yet available for ggF, because these involve higher order calculations including two loop corrections
- The measurement for the ttH are inclusive so far

κ_{λ} -only results

- A likelihood fit is performed to constrain the Higgs boson self-coupling κ_{λ} in the single-Higgs measurement
 - Theory validity range [arXiv: 1607.04251]: $-20 < \kappa_{\lambda} < 20$


Best fit: $\kappa_{\lambda} = 4.0^{+4.3}_{-4.1} = 4.0^{+3.7}_{-3.6}(stat.)^{+1.6}_{-1.5}(exp.)^{+1.3}_{-0.9}(sig.th.)^{+0.8}_{-0.9}(bkg.th.)$


95% CL	Obs.	Exp.
H [<u>ATL-PHYS-PUB-2019-009</u>], up to 80 /fb	[-3.2, 11.9]	[-6.2, 14.4]
HH [<u>arXiv:1906.02025]</u> , up to 36 /fb	[-5.0, 12.0]	[-5.8, 12.0]

The sensitivity from single-Higgs and double-Higgs is similar

κ_{λ} and κ_{F} , κ_{λ} and κ_{V} fits

- A simultaneous fit is performed to κ_{λ} and κ_{F} ($\kappa_{V} = 1$), κ_{λ} and κ_{V} ($\kappa_{F} = 1$)
- These fits target scenarios where new physics could affect only the Yukawa type terms ($\kappa_V = 1$) or only the couplings to vector bosons ($\kappa_F = 1$), in addition to the Higgs boson self-coupling (κ_λ)

- The sensitivity to κ_{λ} is not much degraded when determining κ_F at the same time
- While it's degraded by 50% when determining κ_V simultaneously

POIs	Granularity	$\kappa_F^{+1\sigma}_{-1\sigma}$	$\kappa_{V_{-1}\sigma}^{+1\sigma}$	$\kappa_{\lambda_{-1}\sigma}^{+1\sigma}$	<i>κ</i> _λ [95% C.L.]
K a	STXS	1	1	$4.0^{+4.3}_{-4.1}$	[-3.2, 11.9] Obs
K _λ	5175	1	1	$1.0^{+8.8}_{-4.4}$	[-6.2, 14.4] Exp
к _л , к _V	STXS	1	$1.04^{+0.05}_{-0.04}$	$4.8^{+7.4}_{-6.7}$	[-6.7, 18.4]
к <u>л</u> , кү	~~~~~		$1.00^{+0.05}_{-0.04}$	$1.0^{+9.9}_{-6.1}$	[-9.4, 18.9]
K_{λ}, K_F	STXS	$0.99\substack{+0.08\\-0.08}$	1	$4.1^{+4.3}_{-4.1}$	[-3.2, 11.9]
	1.00^{+0}_{-0}		1	$1.0^{+8.8}_{-4.4}$	[-6.3, 14.4]

2019/11/26

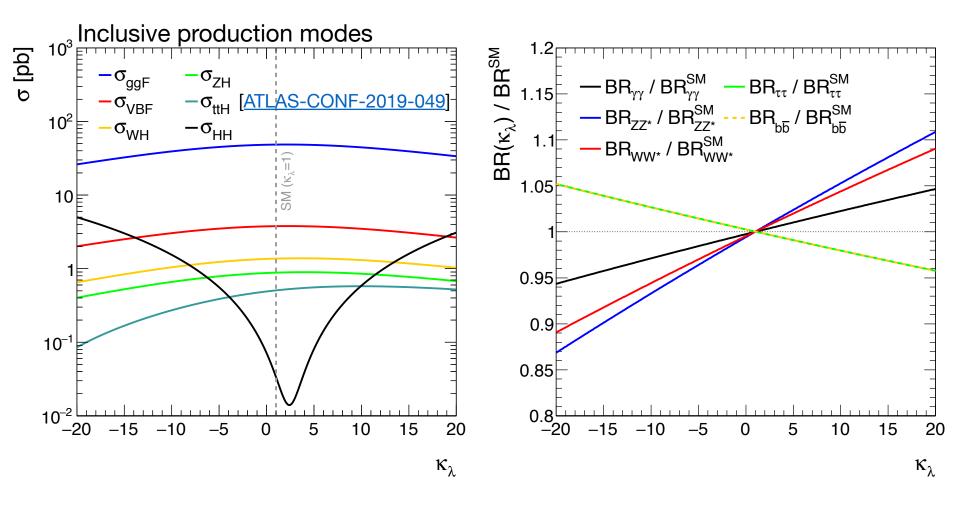
• Combine single-Higgs and double-Higgs together to maximize the sensitivity to constrain κ_{λ}


Data and input measurement

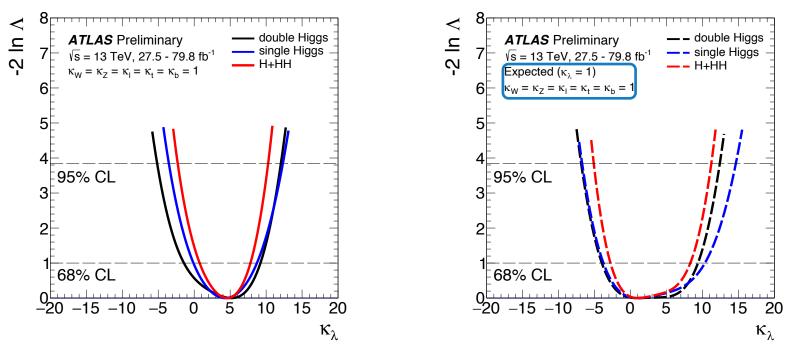
Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
$H \to \tau \tau$	36.1
$VH, H \rightarrow b\bar{b}$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$HH \rightarrow b\bar{b}b\bar{b}$	27.5
$HH ightarrow b ar{b} au^+ au^-$	36.1
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1

- Within each of the single-Higgs and the double-Higgs analyses all the categories are orthogonal by definition
- The single-Higgs and double-Higgs categories are not all orthogonal
 - The overlap has been studied, the $ttH(\gamma\gamma)$ categories have been removed as they show large overlap with the $HH \rightarrow bb\gamma\gamma$ categories
 - Also the impact on the combined limits of removing $ttH(\gamma\gamma)$ categories is smaller w.r.t removing $HH \rightarrow bb\gamma\gamma$ categories

Theory model and interpretation in the double-Higgs


• The double-Higgs production

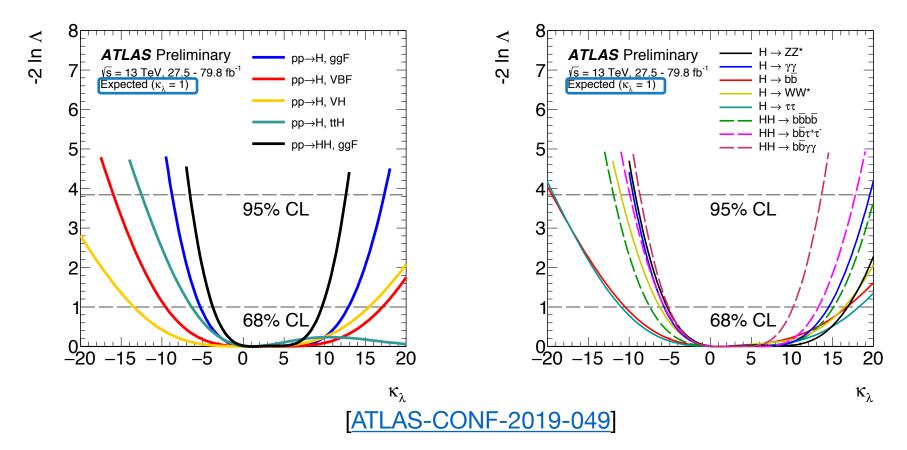
- The amplitude of the HH production can be parameterized as a function of ttH coupling $\kappa_t = g_{ttH}/g_{ttH}^{SM}$ and HHH coupling $\kappa_{\lambda} = g_{HHH}/g_{HHH}^{SM}$ $A(\kappa_t, \kappa_{\lambda}) = \kappa_t^2 B + \kappa_t \kappa_{\lambda} T$
- Omitting the integral on the final phase space and on the PDFs for simplicity
- $\sigma(pp \to HH) \sim \kappa_t^4 \left[|B|^2 + \frac{\kappa_\lambda}{\kappa_t} (B^*T + TB^*) + \left(\frac{\kappa_\lambda}{\kappa_t}\right)^2 |T|^2 \right]$
- κ_t^4 appears in the normalization, the signal acceptance depends only from $\kappa_{\lambda}/\kappa_t$
- When estimating $\sigma(pp \to HH)$, global normalization factors (κ_t^4) don't play a role
 - ⇒ HH-only measurement can't measure κ_{λ} and κ_t at the same time, κ_t is fixed to the SM in HH analysis alone


Theoretical model and parameterization

 Parametrization of single Higgs is as before, and is used consistently in double-Higgs analyses for single-Higgs backgrounds and Higgs decay branching ratios

κ_{λ} -only results

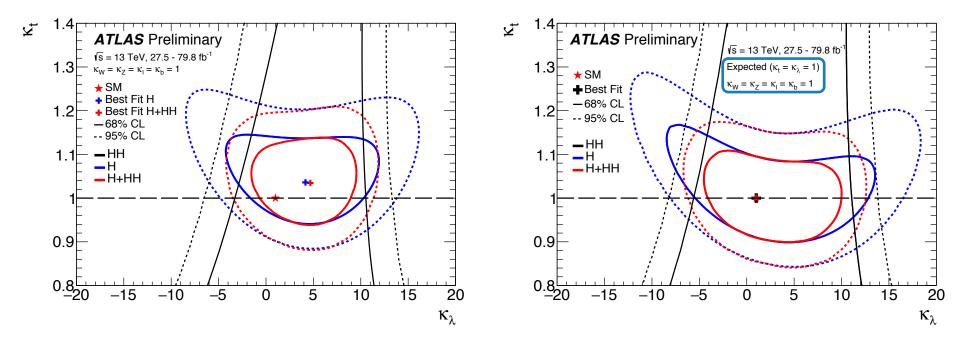
- A likelihood fit is performed to constrain κ_{λ} in the combination of single-Higgs and double-Higgs
- All other Higgs boson couplings are fixed to the SM ($\kappa_t = \kappa_b = \kappa_l = \kappa_W = \kappa_Z = 1$)


- $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8} = 4.6^{+2.9}_{-3.5}(stat.)^{+1.2}_{-1.2}(exp.)^{+0.7}_{-0.5}(sig.th.)^{+0.6}_{-1.0}(bkg.th.)$ (obs.)
- $\kappa_{\lambda} = 1.0^{+7.3}_{-3.8} = 1.0^{+6.2}_{-3.0}(stat.)^{+3.0}_{-1.7}(exp.)^{+1.8}_{-1.2}(sig.th.)^{+1.7}_{-1.1}(bkg.th.)$ (exp.)

95% CL	Obs.	Exp.
H [ATL-PHYS-PUB-2019-009]	[-3.2, 11.9]	[-6.2, 14.4]
HH [arXiv:1906.02025]	[-5.0, 12.0]	[-5.8, 12.0]
H+HH [ATLAS-CONF-2019-049]	[-2.3, 10.3]	[-5.1, 11.2]

The combination can better constrain κ_λ

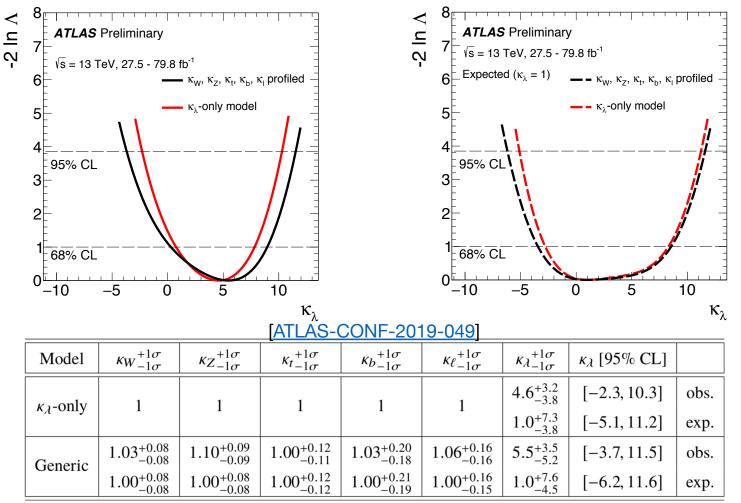
Higgs production/decay contributions


Contributions from the different production and decay modes

- HH production is the most sensitive channel among all Higgs production processes, followed by ggF
- $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow bb\tau\tau$ give dominant contributions in constraining κ_{λ} , followed by $H \rightarrow \gamma\gamma$

$\kappa_{\lambda} - \kappa_t$ measurement

• By fitting together double-Higgs and single-Higgs, κ_{λ} and κ_t can be constrained at the same time



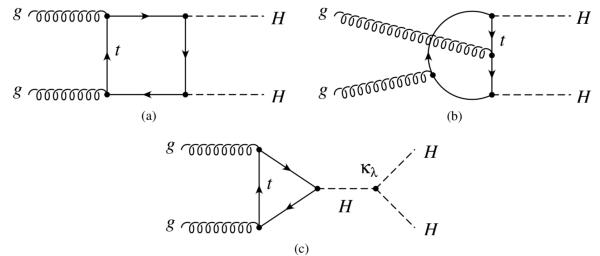
ATLAS-CONF-2019-049

• The double-Higgs analysis alone doesn't have sensitivity to constrain κ_{λ} and κ_t simultaneously

Generic model

• To give the most generic measurement, a likelihood fit is performed to constrain simultaneously κ_{λ} , κ_{W} , κ_{Z} , κ_{t} , κ_{b} and κ_{l}

Only the single-Higgs and double-Higgs combination could give enough sensitivity to exploit the generic model


Summary

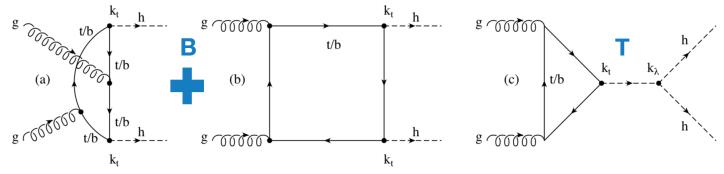
- The HH searches (up to 36.1 fb⁻¹) provide a unique chance to probe the Higgs self-coupling $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$ with direct measurements, the observed 95% CL is [-5.0, 12.0]
- The single-Higgs analysis (up to 80 fb⁻¹) shows that an alternative and complementary approach to constrain the Higgs self-coupling is feasible
- This approach can provide similar sensitivity w.r.t the double Higgs production, 95% CL: [-3.2, 11.9], with other κ parameters fixed to the SM
- Furthermore, κ_{λ} has been constrained exploiting the combination of single-Higgs analyses and double-Higgs analyses
- The combination improves the constraining power on κ_{λ} , 95% CL: [-2.3, 10.3], with other κ parameters fixed to the SM
- The combination can also investigate other models to which there is little sensitivity using just single-Higgs or double-Higgs measurements

Backup

Introduction about HH measurement

- During Run2 data taking, the Higgs production cross-sections and decays have been measured with an increasing precision
- The properties of the Higgs scalar potential, in particular the Higgs boson selfcoupling, are still largely unconstrained
- The non-resonant HH production processes (ggF)
 - $\sigma^{SM}(pp \rightarrow HH, ggF)$: 33.41 fb at NLO QCD correction with the full top-quark mass dependence

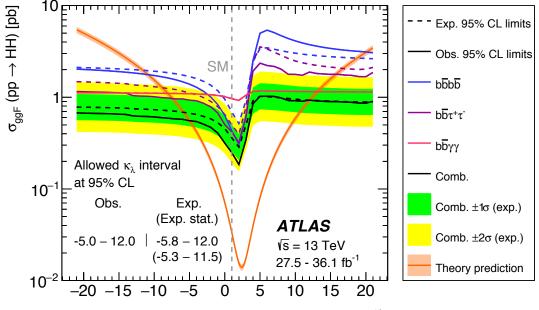
- The tree-level diagram is sensitive to the Higgs boson trilinear self-coupling constant λ_{HHH}
- The HH searches provide a unique chance to probe it with direct measurements


Input channels up to 36.1 fb⁻¹

Branching Ratio LHC HIGGS XS WG 2016 bb WW gg **bbbb**: benefitting from the largest BR of $H \rightarrow$ $\tau\tau$ bb cc **bb** $\tau\tau$: being large decay (BR ~7.5%) and ZZ 10⁻² with excellent background rejection from τ performance **bbyy**: the best H resolution by $H \rightarrow \gamma \gamma$ 10^{-3} Zγ [CERN YR4] 10^{-4 L___} 120 M_н [GeV]

- Channels are either kept statistically orthogonal by event selection or have negligible overlap
- The rest HH channels have negligible contributions

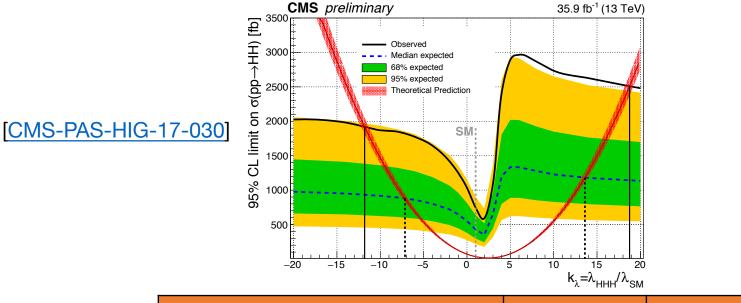
Theory model and interpretation


• The di-Higgs production

- The amplitude of the HH production can be parameterized as a function of ttH coupling $k_t = g_{ttH}/g_{ttH}^{SM}$ and HHH coupling $k_{\lambda} = g_{HHH}/g_{HHH}^{SM}$ $A(k_t, k_{\lambda}) = k_t^2 B + k_t k_{\lambda} T$
- Omitting the integral on the final phase space and on the PDFs for simplicity $\sigma(pp \to HH) \sim k_t^4 \left[|B|^2 + \frac{k_\lambda}{k_t} (B^*T + TB^*) + \left(\frac{k_\lambda}{k_t}\right)^2 |T|^2 \right]$
- The signal acceptance depends only from k_{λ}/k_t
- When estimating upper limits on $\sigma(pp \rightarrow HH)$ (POI), all global normalization factors (k_t^4) don't play a role, the limit can be expressed as a function of k_{λ}/k_t
 - \Rightarrow HH-only measurement can't measure k_{λ} and k_t at the same time

Limits on the trilinear Higgs self-coupling

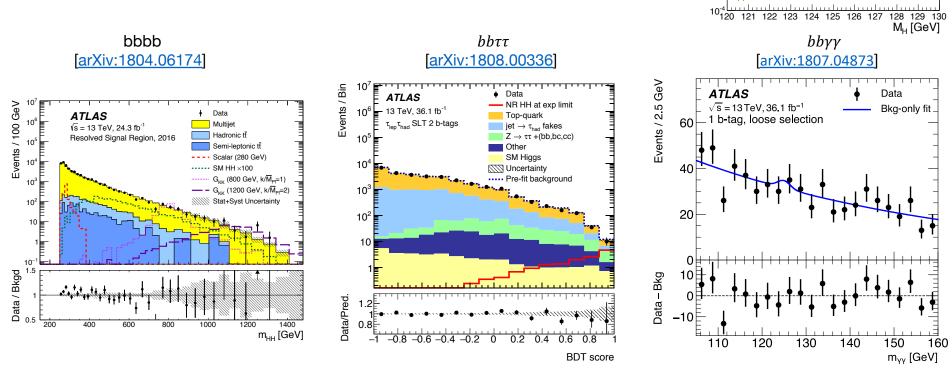
- With each k_{λ} assumption, estimate the upper limits of the HH production (assuming SM H decay) with CLs approach
- The limit curve is compared to the predicted cross section, from which the constraint on k_{λ} can be determined


[arXiv:1906.02025]

 κ_{λ}

	Allowed κ_{λ} interval at 95% CL					
Final state	Obs.	Exp.	Exp. stat.			
$bar{b}bar{b}$	-10.9 - 20.1	-11.6 - 18.8	-9.8 - 16.3			
$bar{b} au^+ au^-$	-7.4 — 15.7	-8.9 - 16.8	-7.8 - 15.5			
$bar{b}\gamma\gamma$	-8.1 — 13.1	-8.1 - 13.1	-7.9 - 12.9			
Combination	-5.0 - 12.0	-5.8 - 12.0	-5.3 - 11.5			

Combination of HH channels in CMS


- CMS combines Higgs boson pair productions with 35.9 fb⁻¹ data collected in 2016
- Channel
 - $bb\gamma\gamma$, $bb\tau\tau$, bbbb, bbVV (additional channel w.r.t to the ATLAS measurement)
- A HH production scan is performed for different values of the k_{λ}

95% CL	Obs.	Exp.
ATLAS [arXiv:1906.02025]	[-5.0, 12.0]	[-5.8 <i>,</i> 12.0]
CMS [CMS-PAS-HIG-17-030]	[-11.8, 18.8]	[-7.1, 13.6]

Input channels up to 36.1 fb⁻¹

- *bbbb*: benefitting from the largest BR of $H \rightarrow bb$
- *bbττ*: being large decay (BR ~7.5%) and with excellent background rejection from τ performance
- $bb\gamma\gamma$: the best H resolution by $H \rightarrow \gamma\gamma$
- The rest HH channels have negligible contributions

Branching Ratio

10-2

10

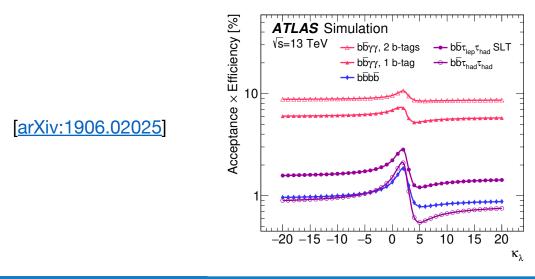
bb WW

99 ττ

cē ZZ

Zγ

[CERN YR4]

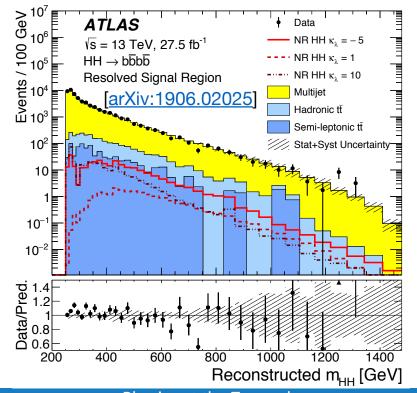

 Channels are either kept statistically orthogonal by event selection or are checked to have negligible overlap

Kinematical parameterization

- The linear combination method
 - To avoid simulating a huge amount of events per k_{λ}
 - 3 basis amplitudes with certain k_{λ} LO samples can be linearly combined into an amplitude with any k_{λ} value

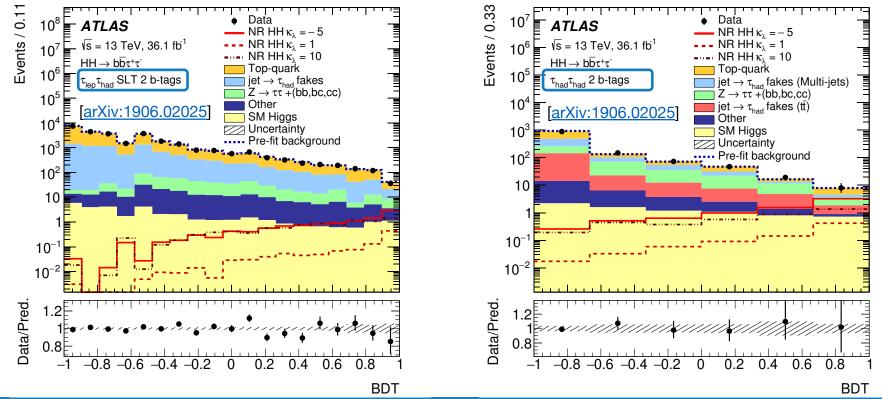
$$|A(k_t,k_{\lambda})|^2 = k_t^2 \left[\left(k_t^2 + \frac{k_{\lambda}^2}{20} - \frac{399}{380} k_t k_{\lambda} \right) |A(1,0)|^2 + \left(\frac{40}{38} k_t k_{\lambda} - \frac{2}{38} k_{\lambda}^2 \right) |A(1,1)|^2 + \frac{k_{\lambda}^2 - k_t k_{\lambda}}{380} |A(1,20)|^2 \right] \right]$$

- $(k_t, k_\lambda) = \{(1,0), (1,1), (1,20)\}$ basis is less prone to statistical fluctuations for almost all k_λ points, due to higher number of events at low m_{HH} , coming from a softer $m_{HH}^{k_\lambda=20}$ spectrum
- The k_{λ} -reweighting method (LO \rightarrow NLO)
 - Ratios of the m_{HH} distributions for all k_{λ} values to the SM distribution are computed and then used to reweight the events of NLO SM HH signal samples
 - The reweighted NLO signal sample is used to compute the signal acceptance and the kinematic distributions for different values of k_{λ}



BDT training strategies

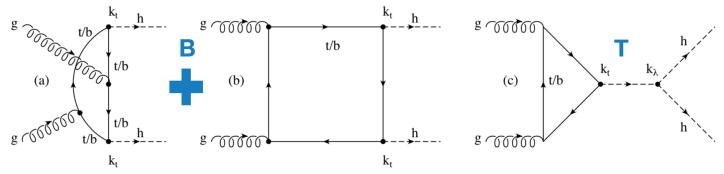
- $k_{\lambda} = 20$ BDT performs better than the BDT when k_{λ} deviates from the SM expectation, as it is more sensitive to events in softer m_{HH} spectrum, while the loss in sensitivity around $k_{\lambda} = 1$ is very small
- Thus the $k_{\lambda} = 20$ BDT is used for all varied k_{λ} signals


Interpretation in the bbbb channel

- The analysis selection is the same of the non-resonant SM search and the same final discriminant, the reconstructed m_{HH} distribution, is used as a fit template [arXiv:1804.06174]
- The signal model is modified to take into account its dependence from k_{λ}
- The signal acceptance varies by a factor 2.5 over the probed range of k_{λ} : [-20, 20]
- Both effects together determine how the exclusion limits on the HH production cross-section vary as a function of k_λ

Interpretation in the $bb\tau\tau$ channel

- Final states with two hadronic tau decays and with one leptonic and one hadronic tau decays are used
- The analysis uses a BDT discriminant trained using the re-weighted NLO signal sample corresponding to $k_{\lambda} = 20$, which shows good sensitivity over the whole range of probed k_{λ} -values: [-20, 20]
- The sensitivity is also affected by the variation of the signal acceptance of a factor 3 over the probed range of k_{λ} -values


Physics at the Terascale

Interpretation in the $bb\gamma\gamma$ channel

- The kinematic selection used for the k_{λ} -scan uses looser cuts on the b-jets pT than the selection used to look for the SM HH process [arXiv:1807.04873], because the average p_T^H is lower at large values of k_{λ}
- The statistical analysis is performed using the $m_{\gamma\gamma}$ distribution as the fit template
- The signal acceptance varies by about 30% over the probed range of k_{λ} -values: [-20, 20]
- The shape of the $m_{\gamma\gamma}$ remains independent of k_{λ}
 - The $m_{\gamma\gamma}$ dependence is examined by comparing the generated spectrum in simulation using different k_{λ} values
 - They agree well within statistical uncertainties
 - Furthermore, as the $m_{\gamma\gamma}$ is modeled with DSCB, μ_{CB} and σ_{CB} are extracted as a function of k_{λ}
 - Both parameters are flat against k_{λ} variations in general

Theory model and interpretation in the double-Higgs

• The di-Higgs production

- The amplitude of the HH production can be parameterized as a function of ttH coupling $k_t = g_{ttH}/g_{ttH}^{SM}$ and HHH coupling $k_{\lambda} = g_{HHH}/g_{HHH}^{SM}$ $A(k_t, k_{\lambda}) = k_t^2 B + k_t k_{\lambda} T$
- Omitting the integral on the final phase space and on the PDFs for simplicity
- $\sigma(pp \to HH) \sim k_t^4 \left[|B|^2 + \frac{k_\lambda}{k_t} (B^*T + TB^*) + \left(\frac{k_\lambda}{k_t}\right)^2 |T|^2 \right] (bb\gamma\gamma)$
- 3 basis amplitudes with certain k_λ samples (k_t, k_λ) = {(1,0), (1,1), (1,20)} can be linearly combined into an amplitude with any k_λ value

•
$$|A(k_t, k_\lambda)|^2 = k_t^2 \left[\left(k_t^2 + \frac{k_\lambda^2}{20} - \frac{399}{380} k_t k_\lambda \right) |A(1,0)|^2 + \left(\frac{40}{38} k_t k_\lambda - \frac{2}{38} k_\lambda^2 \right) |A(1,1)|^2 + \frac{k_\lambda^2 - k_t k_\lambda}{380} |A(1,20)|^2 \right] (bbbb, bb\tau\tau)$$

2019/11/26

Systematic uncertainties

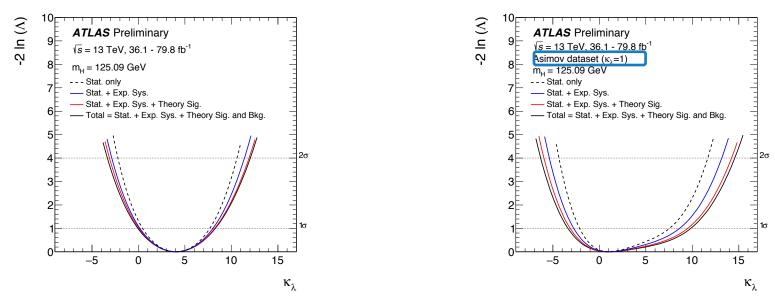
- Experimental systematic uncertainty
 - With the recommendation of CP groups, the uncertainty sources are correlated by sharing the same NP across the channels
- Background uncertainty
 - The uncertainties (modeling and rates) are not correlated given different phase space and evaluation methods
- Theoretical uncertainty
 - The uncertainties on signal acceptances are correlated
 - They are from renormalization and factorization scales, PS as well as PDF sets

POI and uncertainties

- POI: $\sigma(pp \rightarrow HH)$, assuming SM branching fractions
- Detector systematic uncertainties
 - Jet reconstruction, b-jet tagging, electron, muon and photon reconstruction and identification, as well as the uncertainty of the integrated luminosity are correlated
- Theory uncertainties in the signal acceptance
 - QCD scales, PDFs and PS are correlated
- Theoretical and modelling systematic uncertainties of the backgrounds are not correlated
 - There is a negligible overlap among these background contributions to the different analyses

- The predicted HH cross section is scaled by a factor as a function of k_{λ}
 - The factor is calculated by non-SM-lambda xs over SM-lambda xs ($k_{\lambda} = 1$) at NNLO+NNLL from <u>YR4</u>

Event kinematic information


Re-deriving the kinematic dependent coefficients C₁ⁱ

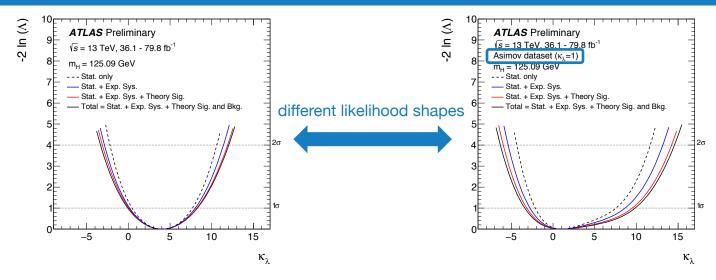
		STXS region	VBF	WH	ZH
		$C_{1}^{i} \times 100$			
		VBF -cuts + p_T^{j1} < 200 GeV, $\leq 2j$	$C_{1}^{i} \times 100$ $\leq 2j 0.63 0.91 1.0$ $\geq 3j 0.61 0.85 1.0$ $0.64 0.89 1.10$ GeV $0.65 1.13 1.2$ $0.39 0.23 0.2$ $1.15 0.18$ 0.33	1.07	
		$VBF\text{-cuts} + p_{\rm T}^{j1} < 200 \text{ GeV}, \ge 3j$	0.61	0.85	1.04
		VH -cuts + $p_{\rm T}^{j1}$ < 200 GeV	0.64	0.89	1.10
		1.13	1.28		
	$qq \rightarrow H\ell\nu$	$p_{\rm T}^{j1} > 200 { m GeV}$	0.39	0.23	0.28
		$p_{\rm T}^V < 150 { m ~GeV}$		1.15	
ATL-PHYS-PUB-2019-009	$aa \rightarrow H\ell y$	$150 < p_{\rm T}^V < 250 \text{ GeV}, 0j$	$\leq 2j 0.63 0.91 \\ \geq 3j 0.61 0.85 \\ 0.64 0.89 \\ 0.65 1.13 \\ 0.39 0.23 \\ \hline 1.15 \\ 0.18 \\ 0.33 \\ 0 \\ \hline 0 \\ 0 \\ \hline 0 \\ \hline 0 \\ 0 \\ \hline 0 \\ 0 \\$		
	$qq \rightarrow mv$	$150 < p_{\rm T}^V < 250 \text{ GeV}, \ge 1j$	$\begin{array}{c c} C_1^i \times 100 \\ \hline 0.63 & 0.91 & 1.07 \\ \hline 0.61 & 0.85 & 1.04 \\ \hline 0.64 & 0.89 & 1.10 \\ \hline 0.65 & 1.13 & 1.28 \\ \hline 0.39 & 0.23 & 0.28 \\ \hline 1.15 & \\ 0.18 & \\ \hline 0.33 & \\ \end{array}$		
		$p_{\rm T}^V > 250 { m ~GeV}$		0	
	$p_{T}^{V} < 150 \text{ GeV}$				1.33
	$qq \rightarrow mi$		0.20		
	$aa \rightarrow H_{\rm WW}$	$150 < p_{\rm T}^V < 250 \text{ GeV}, \ge 1j$			0.39
	$qq \rightarrow \pi \nu \nu$	$p_{\rm T}^V > 250 { m ~GeV}$			
		$p_{\rm T}^{\nu} > 250 {\rm GeV}$			

- In the phase space where K_{EW}^i corrections are most significant (~15% variations for high p_T^H), the sensitivity to the Higgs boson trilinear coupling is minimal
 - It's assumed to be constant to the inclusive values
 - A test has been performed using different K_{EW} for each STXS bin
 - The fit results with the new K_{EW} configuration differ by less than percent level w.r.t the nominal results
- The selection efficiency can also depend on k_{λ} , the effect has been tested using MC samples
 - In general, a negligible dependence is found

k_{λ} -only results

- A likelihood fit is performed to constrain the Higgs boson self-coupling k_{λ}
 - Theory validity range [arXiv: 1607.04251]: $-20 < k_{\lambda} < 20$

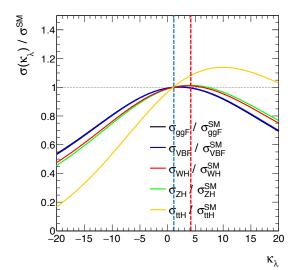
• $k_{\lambda} = 4.0^{+4.3}_{-4.1} = 4.0^{+3.7}_{-3.6}(stat.)^{+1.6}_{-1.5}(exp.)^{+1.3}_{-0.9}(sig.th.)^{+0.8}_{-0.9}(bkg.th.)$

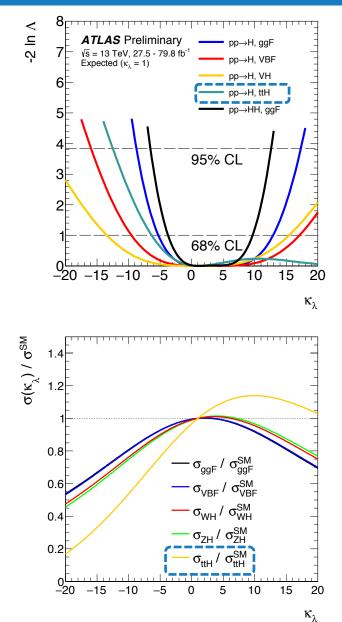

95% CL	Obs.	Exp.
H [ATL-PHYS-PUB-2019-009]	[-3.2, 11.9]	[-6.2, 14.4]
HH [arXiv:1906.02025]	[-5.0, 12.0]	[-5.8, 12.0]

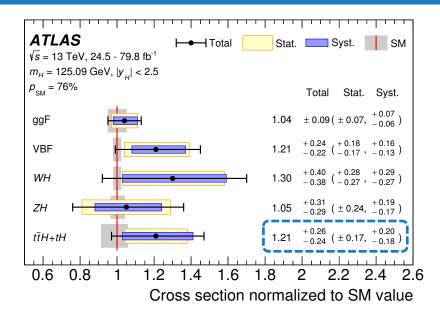
- The impact on the k_λ by using an inclusive crosssection measurement has been studied, where the VBF, WH and ZH are considered as single inclusive bins
- The inclusive fit does not lead to a significant loss in sensitivity to k_{λ}

	POIs	Granularity	$\kappa_{F}^{+1\sigma}_{-1\sigma}$	$\kappa_{V_{-1\sigma}^{+1\sigma}}$	$\kappa_{\lambda}^{+1\sigma}_{-1\sigma}$	к _д [95% C.L.]
	Ka	STXS	1	1	$4.0^{+4.3}_{-4.1}$	[-3.2, 11.9]
,	K _λ	51765		$1.0^{+8.8}_{-4.4} [-6.2, 14]$	[-6.2, 14.4]	
	Ka	κ_{λ} inclusive 1	1	$4.6^{+4.3}_{-4.2}$	[-2.9, 12.5]	
_	ĸ _λ	Inclusive		1	$1.0^{+9.5}_{-4.3}$	[-6.1, 15.0]

2019/11/26

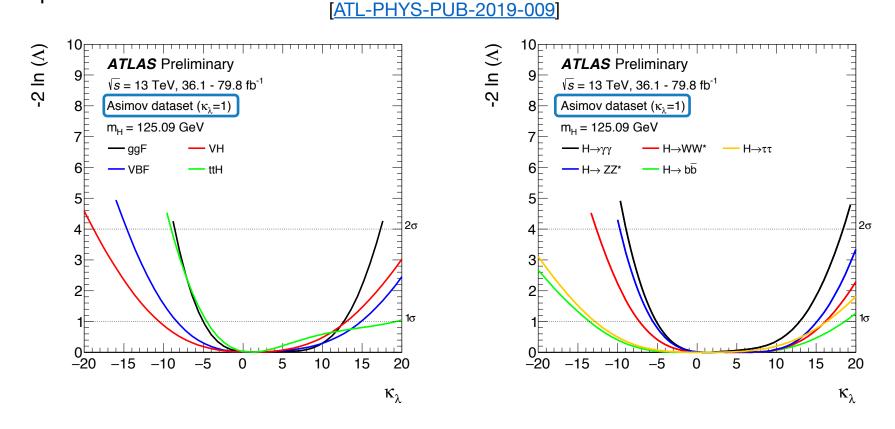

Likelihood comparison


- Explanation
 - 1. The non-linearity of the cross-section dependence from k_{λ}
 - 2. The difference of the best-fit values of k_{λ}


$$\mu_{i}(k_{\lambda}, k_{i}) = \frac{1}{1 - (k_{\lambda}^{2} - 1)\delta Z_{H}} \left[k_{i}^{2} + \frac{(k_{\lambda} - 1)C_{1}^{i}}{K_{EW}^{i}} \right]$$

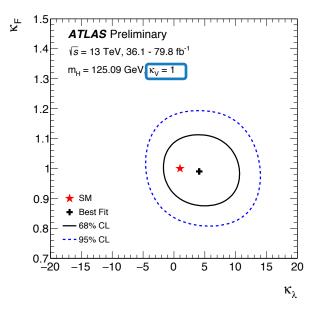
- The shape is affected by the different behavior of the quadratic and linear k_{λ} dependent terms
 - If $k_{\lambda} < 1$ both terms induce a reduction of the Higgs boson production cross-sections
 - While for $k_{\lambda} > 1$ there are larger cancellations that weaken the cross-section dependence

The observed $\sigma_{ggF}, \sigma_{ttH}$



- ggF, ttH are sensitive for measuring k_{λ}
- The measured σ_{ggF} , σ_{ttH+tH} is greater SM
- To get higher σ_{ggF} , σ_{ttH} , k_{λ} has to be greater than the SM

The sensitivity of different productions and decays


 Moreover, the global likelihood shape depends on combining the different production and decays, which have different sensitivities and significantly different likelihood shapes

 The dominant contributions derive from the di-boson decays γγ, ZZ*, WW* and from the ggF and ttH productions

k_{λ} and k_{F} , k_{λ} and k_{V} fits

- A simultaneous fit is performed to k_{λ} and k_F ($k_V = 1$), k_{λ} and k_V ($k_F = 1$)
- These fits target BSM scenarios where new physics could affect only the Yukawa type terms ($k_V = 1$) or only the couplings to vector bosons ($k_F = 1$), in addition to the Higgs boson self-coupling (k_λ)

[<u>ATL-PHYS-PUB-2019-009</u>] ^κ_λ

POIs Granularity		$\kappa_{F}^{+1\sigma}_{-1\sigma}$	$\kappa_{V_{-1\sigma}^{+1\sigma}}$	$\kappa_{\lambda_{-1}\sigma}^{+1\sigma}$	к _д [95% C.L.]
1013	Granularity	$\kappa_{F} - 1\sigma$	$\kappa_{V-1\sigma}$	$\kappa_{\mathcal{A}} = 1\sigma$	κ _λ [)5 /0 C.L.]
ĸ _λ	STXS	1	1	$4.0^{+4.3}_{-4.1}$	[-3.2, 11.9]
	51715	1	1	$1.0^{+8.8}_{-4.4}$	[-6.2, 14.4]
K. inc	inclusive	inclusive 1	1	$4.6^{+4.3}_{-4.2}$	[-2.9, 12.5]
Кд	menusive	1	1	$1.0^{+9.5}_{-4.3}$	[-6.1, 15.0]
<i>к</i> _λ , <i>к</i> _V	STXS	1	$1.04^{+0.05}_{-0.04}$	$4.8^{+7.4}_{-6.7}$	[-6.7, 18.4]
κ _λ , κ _V			$1.00\substack{+0.05\\-0.04}$	$1.0^{+9.9}_{-6.1}$	[-9.4, 18.9]
$\kappa_{\lambda}, \kappa_F$	STXS	$0.99\substack{+0.08\\-0.08}$	1	$4.1^{+4.3}_{-4.1}$	[-3.2, 11.9]
	5172	$1.00\substack{+0.08\\-0.08}$	1	$1.0^{+8.8}_{-4.4}$	[-6.3, 14.4]

- The sensitivity to k_{λ} is not much degraded when determining k_F at the same time
- While it's degraded by 50% when determining k_V simultaneously
- An even less constrained fit, by either fitting simultaneously k_{λ} , k_{V} and k_{F} , or fitting simultaneously k_{λ} and a common coupling modifier ($k = k_{V} = k_{F}$), results in nearly no sensitivity to k_{λ}

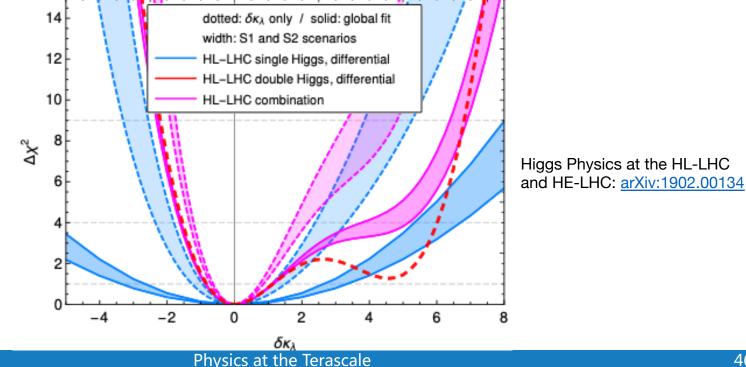
Multiplicative approach in the Higgs production parameterization

• Additional cross-check about k_{λ} interpretation in the Higgs productions

$$\mu_i(k_{\lambda}, k_i) = Z_H^{BSM}(k_{\lambda}) \left[k_i^2 + \frac{(k_{\lambda} - 1)C_1^i}{K_{EW}^i} \right]$$

• Multiplicative approach: k_i can also modifies the loops together with k_{λ} to verify the robustness of the nominal approach against higher-order terms

$$\mu_i(k_{\lambda}, k_i) = Z_H^{BSM}(k_{\lambda}) \left[k_i^2 + \frac{\left(k_{\lambda}k_i^3 - 1\right)C_1^i}{K_{EW}^i} \right]$$


- k_λ measurements have been performed comparing the nominal results and the ones using this additional configuration
- Negligible discrepancies w.r.t the uncertainty of the nominal measurement have been found

- $bb\gamma\gamma$: no signal sample is used
- The analysis acceptance depends on k_{λ}/k_t and has been implemented

Systematic correlations

- The principles for making systematic uncertainties correlations
 - Correlate CP uncertainties where possible
 - Correlate theory signal uncertainties where possible
 - Uncorrelate uncertainties in different releases
 - Uncorrelate background uncertainties due to different phase spaces in different analyses
- Only ~50 NPs need to be studied and correlated

- HH currently are very limited by statistics also in its systematic uncertainties (eg. bkg systematics), therefore at HL they can gain a lot in sensitivity
- The gain for SH is not so enhanced by the increasing of luminosity since at a certain point it becomes limited by systematic uncertainties, that in the HL projection are not so much reduced
- The HL-LHC report that the combination of HH with H brings little additional constraint on the HH constraints alone seems to be a little excessive (especially considering the 2 sigma line)

- Htautau
- <u>https://gitlab.cern.ch/atlas_higgs_combination/projects/HiggsCouplingProspectCom</u> <u>bSummer2018/blob/master/WS_300/Reduced/Htautau/HLLHCred300mu_125.root</u>

RooProduct::WH125_HttjyearAll_chanhh_catboostloose_regsig_selCBA_overallNorm_x_sigma_epsilon[SigXsecOverSM * Mu_VBF_tautau * Mu_VH_tautau * XS13_WH_tautau * oneover_XS13_WH * oneover_BR_tautau * lumi_1516 * oneover_lumi_1516 * WH125_Htt_yearAll_chanhh_catboostloose_regsig_selCBA_epsilon] = 1.00001

- All WH, ZH categories have "Mu_VBF_tautau * Mu_VH_tautau" handlers
- And there is no WH, ZH POIs (i.e Mu_WH_tautau, Mu_ZH_tautau)
- Would it possible to remove Mu_VBF_tautau and add WH, ZH POIs in it?

BooProduct::tH125_Htt_yearAll_chanhh_catboostloose_regsig_selCBA_overallNorm_x_sigma_epsilon[SigXsecOverSM * Mu_gg2H_tautau *
Mu_ttH_tautau * XS13_ttH * oneover_XS13_ttH * lumi_1516 * oneover_lumi_1516 * ttH125_Htt_yearAll_chanhh_catboostloose_regsig_selCBA_epsilon
] = 1

- All ttH categories have "Mu_gg2H_tautau * Mu_ttH_tautau" handlers
- Would it possible take Mu_gg2H_tautau out?
- Currently we can only use Mu_gg2H_tautau and Mu_VBF_tautau in the Htautau workspace