Attention-based reconstruction for $t\bar{t}H(b\bar{b})$ in CMS

L. Benato¹, A. Calandri², M. Donega², A. Gomez Espinosa², G. Kasieczka¹, <u>T. Lösche¹</u>, M. Meinhard², C. Reissel², D. Ruini², R. Wallny²

"Physics at the Terascale" Annual Meeting, 26.11.2019

¹IExp, Universität Hamburg; ²IPA, ETH Zürich

ETH zürich

Introduction - ttH motivation

- SM: fermion masses accounted for by Yukawa interactions between Higgs and fermion field
- + top Yukawa coupling essential probe of SM (expected: $Y_{t}\approx$ 1)
- coupling can be observed in Higgs production in association with top-quarks
- consider single-lepton channel

Introduction - $t\bar{t}H(b\bar{b})$ challenges

Problems:

- high number of jets in final state
- irreducible background ($t\bar{t} + b\bar{b}$) \rightarrow cross section 8 times higher than signal
- often final state not completely reconstructed

 \Rightarrow need to handle combinatorial assignment of jets to improve discrimination

Current state

- current state-of-the-art for SL channel: ANN output used as final discriminant [CMS-PAS-HIG-18-030]
- inputs: basic object kinematics and high-level variables (e.g. Matrix-Element-Method (MEM) discriminant)
- problem: MEM discriminant time consuming in computation (up to 10 min. per event on single CPU)
- solution: develop new DNN architecture with competitive discrimination power using simple kinematics as input

aivozritāt Hambur

COBRA - attention based DNN

A woman is throwing a <u>frisbee</u> in a park.

A little <u>girl</u> sitting on a bed with a teddy bear.

arXiv:1502.03044 [cs.LG]

- COBRA = <u>COmBinatoRics</u> based deep <u>Attention network</u>, developed and implemented at ETH Zurich
- attention originally developed by Google (arXiv:1706.03762 [cs.CL])
- allows network to focus on subset of inputs (e.g. certain parts of image)
- can detect specific features
- extensively used in image recognition and natural language processing
- idea for ttH: focus on jet-combinations to get a handle on combinatorics

COBRA architecture & inputs

input variables (Monte Carlo simulation):

- jets [8 floats/jet]:
 - η , ϕ , Energy, p_X , p_y , p_z , p_T , b-tag
- leptons [7 floats]:
 - + η , ϕ , Energy, p_X, p_y, p_z, p_T
- MET [5 floats]:
 - + ϕ , $\sum E_{T}$, p_X , p_y , p_T
- no prior categorization based on jet or b-tag multiplicity
- always one lepton and ten jets (zero-padded if less) per event $[8 \cdot 10 + 7 + 5 = 92$ floats total]

Attention mechanism

- completely matched sample:
 - 3 jets matched to hadronically decaying top
 - 2 jets matched to Higgs
 - 1 jet matched to leptonically decaying top
- expectation: Higher attention weights for higher number of matched jets ightarrow not the case

- combinations with higher number of jets matched have higher attention
- accuracies (separately trained classifiers): trijet classifier 64.35%; Higgs classifier 38.7%; leptonic top classifier 71.86%

- use of pre-trained classifier does not enhance performance when trained on completely matched sample
- accuracy of 38.7% of dijet classifier probably too low to cause performance increase
- provide network with "optimal" dijet attention:
 - + no jet matched \rightarrow 0
 - + 1 jet matched \rightarrow 1
 - + 2 jets matched \rightarrow 2
 - $\cdot\,$ normalise scores such that the sum is one

- AUC increases with provided attention accuracy
- AUC of pretrained COBRA lower than value at \approx 39%
- further research in enhancing the ability of COBRA to find the Higgs necessary

- tTH important for better understanding mass generation in SM
- major challenge: irreducible background ($t\bar{t} + b\bar{b}$) 8 times higher than signal
- we investigated the use of attention to improve combinatorial assignment of jets in $\ensuremath{t\bar{t}}\xspace H$
- when used for signal/background classification, attention distribution independent of number of matched jets
- if trained as classifier \rightarrow attention increases for higher number of matched jets
- proof-of-principle: performance increases with attention accuracy
- pretrained classifiers show similar perfromance as $\text{FCN} \rightarrow \text{accuracy of attention}$ network needs to be improved

Backup

Background

- tt + b-jets: extra b-jets from (overlapping)
 b-hadrons
- tt + cc: at least one extra charm jet from one or more overlapping hadrons
- tt + light flavour (LF): events which do not fit in other categories
- minor backgrounds: tt-production in association with massive vector bosons or jets, production of W, Z, or γ with jets, diboson processes and single top quark production

MEM method

- Problem: difficult to discriminate between $t\bar{t}H(b\bar{b})$ and $t\bar{t} + b\bar{b}$ \Rightarrow Matrix-Element-Method (MEM)
- uses both experimental and theoretical information by evaluating scattering amplitudes
- for every event, two associated weights are computed according to:

$$\mathsf{P}(\mathbf{x}|lpha) \propto rac{1}{\sigma_lpha} \int \mathrm{d} \mathbf{\Phi}(\mathbf{y}) \quad |\mathcal{M}_lpha|^2 \left(\mathbf{y}
ight) \quad \mathcal{W}(\mathbf{x},\mathbf{y}) \quad \mathcal{W}(\mathbf{x},\mathbf{y})$$

- + α can stand for signal or background-only hypothesis
- $|M_{\alpha}|^2$ (y) is LO matrix element, $W(\mathbf{x}, \mathbf{y})$ transfer function simulating detector response with \mathbf{x} being measured and \mathbf{y} the true parameters
- discriminant is likelihood ratio: $M_i = \frac{P(\mathbf{x}_i | sig)}{P(\mathbf{x}_i | sig) + k \cdot P(\mathbf{x}_i | bkg)}$; k = optimised parameter

Performance comparison

- sample: \geq 4 jets, \geq 3 btags
- no significant difference in performance visible
- other architectures (e.g. with pretrained classifiers) show no performance increase
 → rate at which correct Higgs combination is found still too low

Comparison of b-tagging algorithms

Full sample CSV v2

- AUC performance decrease for CSV v2
- no significant change in the difference of performance between FCN and COBRA

DNN model	COBRA w/ att.	COBRA w/o att.	FCN comb.	simple FCN	Current CMS
AUC	0.80	0.80	0.79	0.80	N/A
Upper stat. uncertainty	0.194	0.206	0.203	0.194	0.22
Lower stat. uncertainty	0.194	0.206	0.203	0.194	0.21

Object selection and samples

Object selection	SL		
Application of all MET filters	\checkmark		
Electrons: tight ID, isolation cuts	$ m p_T > 30$ GeV, $ \eta < 2.1$		
Muons: tight ID, isolation cuts	$p_{\mathrm{T}} > 26\mathrm{GeV}$, $ \eta < 2.1$		
Jets: AK4PFchs,	$p_{ m T} > 30~{ m GeV}, \eta < 2.4$		
Loose ID with lepton removal and PU jet ID			
b-tagging via deepCSV			
MET	> 20 GeV		

Samples:

- process: ttH(bb) SL; tag: 12Apr2018
- process: ttjets SL; tag: 12Apr2018_new_pmx
- number of events used in training \approx 12.5 Mio.
- no further event selection used in training