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Motivation

ISR

FSR from b FSR from lepton FSR from W

All these processes are treated as signal

Photon can be radiated
from any charged particle 
in the initial and final state
MVA studies on its origin:

● Measurement is probing the 
coupling between top and photon 

● Test of the QED vector structure

● Tensor contributions?

Radiative production

II.Physik-UniGö-MSc-2018/04
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Signal Definition

FSR from b FSR from lepton FSR from W

- -
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Prompt Photon Background
Prompt photon background composition:

Backgrounds can be separated by using
b-tagging information

● W+photon
● Z+photon
● Single top+photon
● Diboson processes and 

ttV processes

Using b-tagged jets:
● Invariant masses (e.g. between 

lepton and b-tagged jet)
● B-tagging scores
● → Powerfull discriminants
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Fake Photon Background
Electronic fake photons (e-fakes) Hadronic fake photons (h-fakes)

Most fake events
(about 80%) 

are very similar
 to signal events

● Electrons misidentified as photons

● Originating from dileptonic channels

● Almost exlusively in the e+jets channel

● Jets faking photons and 
photons originating from jets

● Originating from dileptonic channels

● Contribution roughly equal in both
lepton+jets channels
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Prompt Photon Tagger
● Significant contribution of hadronic fakes in SR
● Use information from EM calorimeter to distinguish

between fakes and prompt photons

Energy Ratios Widths Shower shapes

Use Variables used for 
photon identification as inputs 

for a  binary NN

II.Physik-UniGö-MSc-2017/07

https://www.uni-goettingen.de/de/document/download/1a46ee75e518b2fad5f33fc156312251.pdf/MSc_Voelkel_Benedikt.pdf
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Prompt Photon Tagger

● Binary NN to separate fake photons
and prompt photons

● Using shower shape information only

● Analysis independent tool

Eur.Phys.J. C79 (2019) no.
5, 382(2019-05-03)

http://inspirehep.net/record/1707015?ln=de
http://inspirehep.net/record/1707015?ln=de
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ELD

● Event level discriminator (ELD)

● Signal vs. total background

● Binary NN

● Use PPT as input

This is used in:

Eur.Phys.J. C79 (2019) no.
5, 382(2019-05-03)

II.Physik-UniGö-MSc-2017/07

II.Physik-UniGö-Diss-2018/01

http://inspirehep.net/record/1707015?ln=de
http://inspirehep.net/record/1707015?ln=de
https://www.uni-goettingen.de/de/document/download/1a46ee75e518b2fad5f33fc156312251.pdf/MSc_Voelkel_Benedikt.pdf
https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-002E-E510-8
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ELD 2
● Fiducial cross section measurement

● Using single-lepton 
and dilepton channels

● 2 NN (PPT and ELD)

Eur.Phys.J. C79 (2019) no.
5, 382(2019-05-03)

http://inspirehep.net/record/1707015?ln=de
http://inspirehep.net/record/1707015?ln=de
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From Binary to Multi-Class

Previous Analysis Now

● Binary ELD and PPT

● Data taken in 2015/2016

● Investigate
Multi-class approaches

● Full Run II dataset
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One-vs-All and One-vs-One

Sub 
Class 1

Sub 
Class 2

Sub 
Class n-1

Sub 
Class n

3-class
NN

General Structure is based on 
feed-forward NN built with 
Keras and Tensorflow

One-vs-All

One-vs-One

● Separating one class from 
all remaining classes

● Separating one class from 
signal class

Binary-Sub-Classifier
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Handling Imbalanced Classes

Taking expected numbers of events 
into account during training

Leads to
 Rescaling of weights for training

is necessary

Binary sub-classifier:

Multi-class:
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Training Stacked Models
● Nadam

(Adam Optimizer with
Nesterov momentum)

● 5-fold cross validation

● Binary/Categorical
 cross entropy 
as loss function

● Using early stopping
procedure to prevent
overfitting

● Using dropout to reduce 
overfitting further
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Training Stacked Models
● NAdam

● 5-fold cross validation

● Binary/Categorical
 cross entropy

● Early stopping

● Dropout to reduce 
overfitting

Validation loss < training loss
Since droped nodes are not

used when the training loss is
calculated
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Training Stacked Models
● NAdam

● 5-fold cross validation

● Binary/Categorical
 cross entropy

● Early stopping

● Dropout to reduce 
overfitting

Validation loss < training loss
Since droped nodes are not

used when the training loss is
calculatedBatch size = 100.000 events

→ better gradient estimation
Smooth graphs
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Utilising Multidimensionality

One-vs-One

One-vs-All
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Separating Signal from Background
One-vs-One One-vs-All

Both approaches yield similar results.



  
19Steffen Korn

Analysis Impact

Defining control regions
by applying cuts on NN

output
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Conclusion

● Different machine learning techniques were presented

● Previous analysis focused on binary approaches  

● We are now moving to multi-class approaches

● New multi-class approaches provide the opportunity 
to define new dedicated control regions and as
well as refined signal regions

● These control regions can be used to constrain
the prompt photon and fake photon backgrounds

Thank you for your attention!



Backup
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Optimizing Sub-Classifiers

Generation 0

Evolving Gen. 0

Generation 1

Creating Gen. 0

Generation N

Evolving Gen. N-1

● New generations based on old generations
● Small changes for best model
● Network chosen based on AUC score

in training and testing
● Optimizing all sub-classifiers to improve 

over-all performance
● Training of ~5000 configurations
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Other 2D Distributions

Other 2D distributions
For One-vs-One output
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Other 2D Distributions

Other 2D distributions
For One-vs-All output
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