Laser Pulses shorter than one Light-Field Oscillation

DESY Science Day 2020

Roland E. Mainz Hamburg, 2nd December 2020

Group of Ultrafast Optics and X-Rays

At CFEL, Prof. Franz X. Kärtner

Our Team

Synthesizer and Attoscience

Center for Free-Electron Laser Science

Group Leader

Prof. Franz X. Kärtner

Team Leaders

Dr. Giovanni Dr. Oliver D. Cirmi Mücke

Fabian Scheiba

Miguel Angel Silva Toledo

Alumni Team Members

Dr. Shih-Hsuan Dr. Shaobo Chia Fang

Collaborators

Cerullo

Prof. Giulio Dr. Cristian Manzoni

Team Members

Dr. Giulio Maria Rossi

Yang

Dr. Yudong

View of Our Experiment

60 Years of Laser Development

Gaining Full Control of the Light Field

Continuous Wave Laser

Broadband Laser Media

Ti:Sapphire

ns to ms

Chirped-Pulse-Amplification

G. Mourou & D. Strickland, Nobel Prize 2018

Controlling the Carrier-Envelope-Phase (CEP)

J. L. Hall & T. W. Hänsch, Nobel Prize 2005

Light at Extreme Scales

Listening to ultrafast processes

Freezing Time with Electronic Flash Photography

by H. Edgerton

• The shortest flashes of light for the highest time resolution

Few-Cycle Laser Pulse

 Allows to study the timescale of molecular dynamics

Light at extreme scales: 1 fs = 0.000 000 000 000 001 s 1 PW = 1 000 000 000 000 000 W

Entering the Realm of Attoseconds

HHG provides:

- Pulses in the XUV to soft X-ray
- Pulse shortening (~ 50x)
- BUT: low yield: 10⁻⁸ to 10⁻⁵
- up to 1.6 keV photon energy

HHG driven by Few-Cycles:

3-Steps of HHG:

Entering the Realm of Attoseconds

High Harmonic Generation (HHG) at the forefront of ultrafast science

HHG provides:

- Pulses in the XUV to soft X-ray
- Pulse shortening (~ 50x)
- BUT: low yield: 10⁻⁸ to 10⁻⁵
- up to 1.6 keV photon energy

Sub-cycle pulses eliminate the need for gating techniques and promise to increase the brightness of the isolated attosecond pulse

E0 I_F 1.) tunneling 2.) acceleration 3.) recombination \overline{x} optical cycle of laser field HHG driven by Few-Cycles: **Electron Trajectory Ionization Threshold** Attosecond Burst Laser Field Atom Electron

Page 6

3-Steps of HHG:

Pulse Shortening Techniques

Spectral broadening for a short pulse in time

White-light generation in bulk

~nJ, >2 octaves

Input Pulse 30 fs

https://en.wikipedia.org/wiki/Supercontinuum

Sub-Cycle Output Pulse

Broadband Amplification with OPAs

Optical Parametric Amplifiers

- High gain 10x 10.000x
- Suitable for UV to mid-IR
- Allows broadband amplification (up to 1 octave)

OPA setup

Shifting of center-of-mass twice per swing period

Page 8

Intuitive Analogy

The Synthesis of Few-Cycle Laser Pulses

Crafting laser pulses shorter than one optical cycle

Scheme for OPA-based Synthesis

Coherent combination of ultrashort laser pulses

- Scheme is Scalable in:
 - Bandwidth
 - Pulse Energy
 - Output Power
- CEP-stable broadband seed generation is crucial

Scheme for OPA-based Synthesis

Coherent combination of ultra-short laser pulses

- Scheme is Scalable in:
 - Bandwidth
 - Pulse Energy
 - Output Power
- CEP-stable broadband seed generation is crucial
- Requires active
 attosecond synchronization

Our Current Implementation

DESY. Roland E. Mainz, DESY Science Day 2020, 2nd Dec 2020

Few-Cycle Pulses from each Spectral Channel

Pulses characterized via 2-dimensional spectral shearing interferometry

- IR-channel:
 - 1200-2200 nm
 - 7.9 fs
 - 500 µJ
- NIR-channel:
 - 650-1000 nm
 - 6.0 fs
 - 100 µJ
- (VIS-channel:)
 - 500-700 nm
 - ~6 fs
 - 150 µJ

Few-Cycle Pulses from each Spectral Channel

Pulses characterized via 2-dimensional spectral shearing interferometry

Stabilizing and Controlling the Synthesized Waveform

.... with attosecond precision

Synchronization System:

- In-Line Dual Phase Meter with single-shot spectrometer (right)
- FPGA-based feedback system
- Several timing actuators:
 - short- and long-range stages
 - affect CEPs/RP/Delays

• (1-4 % of waveform period)

Pulse Measurement via Attosecond Streaking

DESY. Roland E. Mainz, DESY Science Day 2020, 2nd Dec 2020

Streaking Gas

Attosecond Streaking of a Sub-Cycle Pulse

Repeatability of the Synthesized Waveform

HHG during Synthesis Parameters Scans

Online Scanning of CEP and RP while observing the HH-spectrum

- Central Energy
- HHG Yield

Relative Phase (RP)

Strong-Field-Attosecond pump-probe spectroscopy:

- Exploiting the sub-cycle nature of our synthesizer to achieve a *hybrid attosecond resolution*
- Strong-field excitation could potentially induce extrinsic dynamics

Attosecond-Attosecond pump-probe spectroscopy

- Different energy ranges via different HH-source gases
- Very efficient HHG + tight focusing strictly required
- Direct attosecond resolution

DESY. Roland E. Mainz, DESY Science Day 2020, 2nd Dec 2020

- Sample: Thin Liquid-Jet
 - Defined confinement
 - Variable thickness
 - Sample: liquid or dissolved agent

NIR

IR

- Sample: Thin Liquid-Jet •
 - **Defined confinement**
 - Variable thickness
 - Sample: liquid or dissolved agent

$H_2O^+ + H_2O \rightarrow OH + H_3O^+$

- **Studying Water Dissociation** •
 - Manifold anomalies of water
 - Simple molecule of high relevance •
 - Complex hydrogen-bond network dynamics

500 nm

100 nm 0

Conclusion and Outlook

Demonstration of a novel laser technology and the implications for attosecond-resolved experiments

PWS

NIR

IR

- Stable Sub-Cycle Pulse Generation
- Direct generation of isolated attosecond pulses via HHG
- Manifold Shaping of the attosecond pulses
- Attosecond Streaking for full reconstruction
 of the synthesized field
- HHG reaching the water-window
- Sub-Cycle/Attosecond pump-probe experiments

REAL REAL PROPERTY NOT THE (urven und gerade Linien zeichnen (Umschalt+F6 LID OR Thank you for your attention!