# LUXE Participation in FCAL Beam Test

Oleksandr Borysov

#### Bremsstrahlung production: Geant4 vs PDG formula

PDG recommended formula for thin targets for bremsstrahlung production:

$$\omega_i \frac{\mathrm{d}N_\gamma}{\mathrm{d}\omega_i} \approx \left[ \frac{4}{3} - \frac{4}{3} \left( \frac{\omega_i}{E_e} \right) + \left( \frac{\omega_i}{E_e} \right)^2 \right] \frac{X}{X_0}$$

It is used to calculate integral on slide 3 to get the pair production rate.

- The formula does not take into account angular distribution of bremsstrahlung photons
- Geant4 simulation:
  - accounts for laser beam transverse size
  - and thick targets to optimize the photon flux.





- Gaussian beam;
- Tungsten target 1%X0 (35um), 2m from IP;
- 10M electrons
- Two histograms are compared:
  - |x| < 1mm and |y| < 1mm;
  - |x| < 25um and |y| < 25um.

# Geant4 simulation with different target thickness and different physics lists

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35um) thickness
- 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: 1 μm.

Number of photons inside |x|<25um and |y|<25um;

| Ny          | 4.91E+06 |
|-------------|----------|
| Ny, E >7GeV | 4.66E+05 |





#### Different target thickness





## y angular distribution for different physics lists





- Angular distribution is the widest for option\_4
   physics list and the narrowest for the local
   one.
- Angular distribution explains bottom right plot on previous slide.
- Total number of photons in forward region is identical for all physics lists.

Number of photons inside |x|<1.5 m and |y|<1.5 m



# Polar angle distribution and spectra





# Unidirectional beam: x=y=px=py=0



### W, 17.5 GeV. Photons

- Beam, x=y=px=py=0;
- Tungsten target 1%X0 (35um) thickness
- 2 m from IP;
- Production cut: 1 μm.



#### Copper targets 1 mm and 2.5 mm. Photons



 $N(\theta)d\theta$ 

### Copper 2.5 mm, Electrons 5 GeV



Ratio: 0.39941 Ratio: 0.195003 Ratio: 0.399752





Ratio: 0.692759 Ratio: 0.37029 Ratio: 0.693171

# TB Magnet





### **TB Magnet Drawing**



# Back up

# Initial electron phase space distribution. Target 2 m, 5 m and 12 m upstream of IP

• 2 m:  $\sigma x = 19 \mu m$ ;

• 5 m:  $\sigma x = 43 \mu m$ ;

• 12 m:  $\sigma x = 100 \, \mu m$ ;

 $\sigma_{x,y}$  at IP: 5  $\mu$ m;

Normalized emittance 1.4 mm mrad;







## Electron and laser beam parameters

| E_pulse, μJ | Crossing angle, rad |    | Laser<br>σz, ps | N Electrons | Electron σx, mm |       |      |
|-------------|---------------------|----|-----------------|-------------|-----------------|-------|------|
| 3.5*10^6    | 0.3                 | 10 | 0.035           | 6.25E+09    | 0.005           | 0.005 | 0.08 |

- Laser wavelength = 800.00 nm (1.5498 eV);
- Circular polarized.