Results from Tracker Alignment Studies for CSA07

Rainer Mankel (DESY)

CMS Hamburg Meeting 7-Nov-2007

based on the following presentations:

11:00	Millepede CSA07 results (20') (🖦 _Slides 🔨)
11:20	HIP CSA07 results (20') (Slides)
11:40	LAS CSA07 results (20') (ဲ <u>Slides</u> 🖄)

Rainer Mankel (DESY) Chung Khim Lae (John Hopkins U.) Maarten Thomas (RWTH Aachen)

Outline

Aims for tracker alignment within CSA07 CSA07 studies Laser alignment Track-based alignment with MillePede-II with HIP algorithm Conclusions

Aims

Exercise full alignment workflow on CMS CAF starting from AlCaReco format (centrally produced) read misaligned geometry from database write aligned geometry to database validation of results Use 2 different algorithms for track-based alignment HIP (already used in CSA06) MillePede-II (new) • Extend statistics to 1.7 million $Z \rightarrow \mu \mu$ events Perform laser alignment study

Definition of Alignment Parameters (Reminder)

ROD level:

- u = preferred measurement direction
- v = second direction in detector plane
- w = normal to detector plane
- α , β , γ specify rotations around u, v, w axes

7-Nov-2007

Misalignment Scenarios

MillePede-II & HIP: similar to CSA06 scenario

- TIB misaligned at detector ("det") level
 - **DS:** Δu , Δv , Δw : $\pm 100 \mu m$; $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$: $\pm 1 \text{ mrad}$
 - SS: Δu : ±100 µm; $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$: ± 1 mrad
- TOB misaligned at rod level
 - **DS:** Δu , Δv , Δw : $\pm 100 \mu m$; $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$: $\pm 1 \text{ mrad}$
 - **SS:** Δu : ±100 µm; $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$: ± 1 mrad; but layer 6 fixed
- Pixel & end caps fixed
- in total 11880 free parameters
- Laser alignment study: use 10 pb⁻¹ scenario
 - features TEC misalignments of moderate size, since at 10 pb⁻¹ we assume already existing improvements from laser alignment
 - 50 free parameters

Laser Alignment

Simulated laser events were digitized on the grid & copied to the CAF disk pool at CERN

First step:

- misalign
- reconstruct laser beam positions
- calculate & store alignment parameters (per disk: x, y, φ)
- this took 1:19 hours
- Second step:
 - validate by redoing the same steps using the aligned geometry from previous step

Laser Alignment: Results

Residuals of laser hits in the TEC

 \rightarrow Fitted Gaussian width improves from 81 μ m \rightarrow 68 μ m

consistent with expected resolution

7-Nov-2007

Reminder: Methodology of Track-Based Alignment Methods Used in CSA07

7-Nov-2007

R. Mankel, Tracker Alignment Studies for CSA07

global fit of all track &

alignment parameters

procedure to handle

MillePede-II suitable

alignment parameters

choice of several

internal fit methods

to fit O(10000)

large number of fit

sophisticated

mathematical

parameters

V. Blobel

8

Workflow for MillePede-Based Alignment in CSA07

Step 1: track-level analysis & track-by-track matrix elements:

can/should be parallelized

Step 2: global fit of alignment parameters

cannot be parallelized

CPU Resources & Turnaround

■ Due to Castor problems, in total 3 of 49 AlCaReco files were excluded from production → affected jobs resubmitted

remaining statistics: 1.65 M events

	CPU time [min]	Wall time [min]
		incl. resubmissions
Mille (16 jobs)	25 (per job)	78
Pede	32	109
Total	432	187

Three hours of latency until upload of first constants is already fair

 could be further reduced by running more Mille jobs in parallel, and a dedicated server for Pede with local storage (since I/O dominated)

7-Nov-2007

New: Multi-Pass Operation of MillePede

Tested for the first time in CMS. Motivation:

- validation of previously applied alignment
- possibly further improvement of alignment constants

(Validation of) Alignment Parameters

7-Nov-2007

Alignment Parameter Residuals (Aligned Geometry vs MC Truth)

 if no big misalignments, one pass is probably sufficient

7-Nov-2007

Alignment Parameter Residuals: TOB Layer 1-5 only

Analysis of Hit Residuals

- This validation method is based on histograms of the "Alignment Monitor" (by Jim Pivarski & Chung Khim Lae). Residuals are normalized to estimated error.
- After alignment, the individual residual distributions are well centered, and their RMS width is significantly reduced

Analysis of Hit Residuals (cont'd)

 "Total residual" = sum of the individual residual histograms. (Residuals are normalized to estimated error.)

 After the alignment, the total residual distribution is much narrower & its RMS width close to ideal

7-Nov-2007

HIP Algorithm

Intrinsically iterative approach

 each iteration organized in 10 parallel jobs
 15-20 minutes CPU per job
 performed with five iterations

 Jobs were run overnight

 after initial problems with database access & insufficient local storage

HIP Convergence Behavior (TIB Dets Layer 1)

7-Nov-2007

HIP: Alignment Parameter Resolutions

TIB	$σ_x$ (μm)	$σ_y$ (μm)	$σ_z$ (μm)	σ_{a} (mrad)	$\sigma_{\scriptscriptstyleeta}$ (mrad)	σ_v (mrad)
Stereo	2.5	19	16	0.15	0.27	0.029
Mono	1.2	Fixed	Fixed	0.90	0.32	0.15
ТОВ	σ_x (µm)	$σ_y$ (μm)	σ_{z} (µm)	σ_{α} (mrad)	σ_{β} (mrad)	σ_v (mrad)
Stereo	0.77	8.3	10	0.60	0.54	0.57
Mono	0.54	Fixed	Fixed	0.57	0.60	0.61

Largely similar resolutions as with MillePede-II

- In general better than in CSA06 (higher statistics)
- Angular resolutions for TOB rods still under study

7-Nov-2007

HIP Validation (I)

Plots based on hit residuals resemble those from MillePede

7-Nov-2007

HIP Validation (II)

Z⁰→µ⁺µ⁻ mass resolution
 improvement after alignment is visible
 close to ideal geometry

Summary

Successfully exercised production-style alignment

 with two track-based algorithms & laser alignment

 Some important developments made & lessons learned

 work flow on grid & CAF (Laser)
 new production system & multi-pass approach (MillePede)
 storage issues (MillePede & HIP)
 resolution still improves with number of events (HIP)

 Turnaround in real-time is very encouraging

 e.g. 3 hours until upload of first constants in MillePede
 also validation of constants has been exercised

[Note: more detailed results regarding alignment performance are available under https://twiki.cern.ch/twiki/bin/view/CMS/TkAlignmentCSA07]

Lessons

Reliability of access to mass storage (CASTOR) is still a topic

- maybe there is a "training effect" data samples under frequent use seem to operate more smoothly
- We should foresee a dedicated batch server for the Pede step
 - with ample memory & local disk space
 - Improves turnaround for Pede
- We should foresee non-user level storage for job steering directories etc (AFS, a few GB).
 - mass storage output could already now be moved to TkAlign CASTOR disk pool

Credits

I would like to thank Gero Flucke & Chung Khim Lae for their help during the preparations. Thanks also to Volker Blobel for his advice on using his MillePede-II program.

The End

The CSA07 Misalignment Scenario

TIB misaligned at detector ("det") level
 DS: Δu, Δv, Δw: ±100 μm; Δα, Δβ, Δγ: ±1 mrad
 SS: Δu : ±100 μm; Δα, Δβ, Δγ: ±1 mrad
 TOB misaligned at rod level
 DS: Δu, Δv, Δw: ±100 μm; Δα, Δβ, Δγ: ±1 mrad
 SS: Δu : ±100 μm; Δα, Δβ, Δγ: ±1 mrad
 SS: Δu : ±100 μm; Δα, Δβ, Δγ: ±1 mrad
 except for layer 6 (fixed)
 Pixel & end caps fixed

The CSA07 Misalignment Scenario (cont'd)

#free parameters:

- TIB Dets DS: 768 x 6 = 4608
- TIB Dets SS: 1188 x 4 = 4752
- TOB rods DS: 180 x 6 = 1080
- TOB rods SS: 360 x 4 = 1440

■ total:

11880

 already a respectable problem (~1/5 of full tracker parameter set)
 use "GMRES" method of MillePede-II instead of traditional "inversion" method

Misalignment Scenarios

Table 6: Values used in the misalignment scenarios. Installation uncertainties and applied misalignments are given as well as misalignments used in previous scenarios. For the misalignment scenarios, RMS values are given together with scaling factors (comparison to initial uncertainties). Uniform distribution is denoted as Uxx, where xx signifies the range $\pm xx \mu m$. Gaussian distribution is denoted as Gxx, where $\sigma = xx$. If not mentioned, the distribution is Gaussian. Angular misalignment $\phi = \alpha, \beta, \gamma$ is expressed in μ rad.

	Updated	Scenarios				Previous scenarios								
	initial uncertainties	1	0 pb-1	-1 100 pb ⁻¹ 1000 pb ⁻¹		First Data Long		Long Ter	Term					
		x, y, z	Scale	φ	x, y, z	Scale	φ	x, y, z	Scale	ϕ	x, y, z	φ	x, y, z	ϕ
TPB			110080	0.555.65	57.1	and terms	venet	-	(Antonio)		I PALAN V		2000.000	
Dets	G60	60	1.00	270	10	0.17	45	5	0.08	22	G13	_	G13	
Rods	U50	10	0.35	7	10	0.35	7	5	0.17	3	G5	—	G5	-
PixelHalfBarrelLayers	U100	10	0.17	7	5	0.08	3	5	0.08	3	G10	G10	G10	G10
TPE	Second a second as the second												1.57.001	8
DetUnits	G5, <i>ф</i> :G100	5	1.00	100	5	1.00	11	5	1.00	11	Dets G5	_	G5	
Panels	G10, <i>\phi</i> :G200	10	1.00	200	10	1.00	22	5	0.50	11		-		
Blades	G10, <i>\phi</i> :G200	10	1.00	15	10	1.00	15	5	0.50	7	Petals G2.5	_	G2.5	_
HalfDisks	G50, <i>\phi</i> :G1000	10	0.20	15	10	0.20	15	5	0.10	7	EndcapLayers G5	G5	G5	G5
TIB						110.0	1.111					-	10000	_
Dets	G180	180	1.00	412	30	0.17	70	10	0.06	20	U200	_	G20	
Rods	G450	100	0.22	65	30	0.07	20	10	0.02	5	U200	_	G20	_
BarrelLayers	G750	100	0.13	65	15	0.02	10	10	0.01	5	G105/G500	G90	G10.5/G50	G9
TOB			111.540	(access)	110,000	1.000	1.12.000		1210314	1997			1004.142	
Dets	G32	32	1.00	75	32	1.00	70	18	0.56	40	U100	—	G10	—
Rods	G100	100	1.00	40	40	0.40	15	18	0.18	7	U100	—	G10	—
BarrelLayers											G67/G500	G59	G6.7/G50	G5.9
HalfBarrels	r : G60, z: G500	60/100	1/0.2	10	20	.33/.04	5	10	.17/.1	2				
TEC					14,000	1.000	222		0.000		000000			
Dets	G22	22	1.00	50	22	1.00	50	22	1.00	50	U50		G5	
Petals	G70	70	1.00	30	55	0.79	20	40	0.57	15	U100		G10	
EndcapLayers	<i>rφ</i> : G60 z: G150	60/150		15	30		5	20		5	G57/G500	G46	G5.7/G50	G4.6
TID	1.1.1.1						10.1.11	101.00					0.000.00	10
Dets	G54	54	1.00	250	50	0.93	230	25	0.46	110	U105		G10.5	
TIDRings	G185	185	1.00	850	50	0.27	230	25	0.14	110	U300		G30	
TIDLayers	G350	250	0.71	380	25	0.07	40	12	0.03	20	U400	U100	G40	G10

7-Nov-2007

Alignment Parameter Residuals: TIB Layer 1 only

Parameter Residual RMS – Layer by Layer

7-N

TIB	σ(u) [μm]	σ(v) [μm]	σ(w) [μm]	σ(α) [mrad]	σ(β) [mrad]	σ(γ) [mrad]
Layer 1	1.9	23.3	12.2	0.092	0.153	0.020
Layer 2	4.1	35.0	27.1	0.167	0.335	0.032
Layer 3	1.0			0.699	0.288	0.126
Layer 4	1.1			0.879	0.308	0.178
ТОВ	σ(u) [μm]	σ(v) [μm]	σ(w) [μm]	σ(α) [mrad]	σ(β) [mrad]	σ(γ) [mrad]
Layer 1	0.7	8.7	11.4	0.022	0.079	0.003
Layer 2	0.7	10.2	13.9	0.026	0.099	0.002
Layer 3	0.8			0.053	0.146	0.003
Layer 4	0.8			0.058	0.178	0.003
Layer 5	0.7			0.080	0.173	0.002