Hyperparameter Optimization

28.10.2019 | Kai Krajsek | Jülich Supercomputing Centre

Mitglied der Helmholtz-Gemeinschaft

OUTLINE

- Hyperparameters
- Cross validation
- Learning curve
- Grid search
- Random search
- Bayesian optimization
- Successive halving/Hyperband
- Challenges

SUPERVISED LEARNING

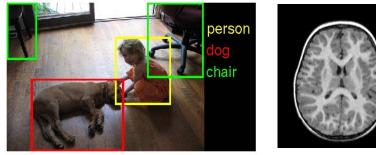
We consider supervised learning, i.e. features and labels are availabe for training

Examples:

 Regression: Optical flow estimation, predicting stock prices, chemical weather forecasting



Classification: Object recognition, image segmentation



SUPERVISED LEARNING

Formal definition: Find functional relationship

 $f: X \to Y$

between infinite sets X (features) and Y (labels) based on a finite set of examples $x_i, y_i \sim p(x, y)$

ill-posed problem 📄 requires additional assumptios

Function usually choosen from a parameterized set Λ , e.g.

- Linear regression: $y = ax + b, a, b \in \mathbb{R}$
- Neural networks: $y = g_N(g_{N-1}((...g_1(x))))$

$$g_i(x) = \sigma_i(A_i x + b_i), A_i \in \mathbb{R}^{m_i \times n_i}, b_i \in \mathbb{R}^{n_i}$$

 $\sigma_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_i}$

SUPERVISED LEARNING

Learning as an optimization problem:

 $\hat{f} = \arg\min_{f \in \Lambda} R(f)$

Expected risk:

$$R(f) := \int L(y, f(x))p(x, y)dxdy$$

Loss function

Only finite number of samples $x_i, y_i \sim p(x, y)$ are availabe

Mitglied der Helmholtz-Gemeinschaft

LAW OF LARGE NUMBERS

The law of large numbers indicates to **estimate** the expected risk by the **average** of individual losses

Emphirical risk

$$\hat{R}_N(f) := \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i))$$

Properties of estimators:

Bias:

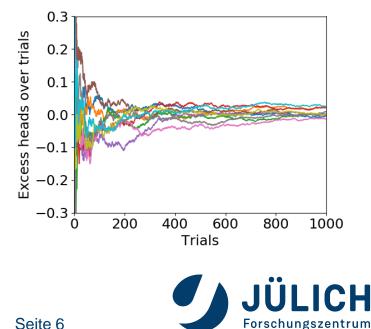
$$\mathbb{B}(\hat{R}) := \mathbb{E}\left[\hat{R}(f)\right] - R(f)$$

Variance:

$$\operatorname{Var}(\hat{R}) := \mathbb{E}\left[\left(\hat{R}(f) - \mathbb{E}\left[\hat{R}(f)\right]\right)^2\right]$$

$$R(f) = \lim_{N \to \infty} \hat{R}_N(f)$$

Example: Coin-toss experiment



HYPER PARAMETERS

Hyper-parameters: All parameters that are not learned by minimizing the approximated risk

The approximation of the risk my itself depend on hyper-parameters, e.g. weight decay

$$\hat{R}(\phi) := \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\phi}(x_i)) + \theta \|\phi\|^2$$

 ϕ Model parameters θ Hyperparameter

Model selection can be cast into HPO, e.g. one hot encoding

HYPER PARAMETERS

We have to make a couple of design decisions (select a model)

- Model complexity Λ_{Θ} , *e.g.* linear functions $\Theta = (a, b)$
- Loss function, *e.g.* quadratic loss $L(x) = x^2$
- Approximation of expected risk, e.g. $\hat{R}(f) := \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$
- Optimization strategy for $\hat{f} = \arg \min_{f \in \Lambda} \hat{R}(f)$

Decisions belong to model/hyperparameter selection

HYPER PARAMETERS

Hyper-parameters can be

- Continous, e.g. regularization parameter
- Discrete, e.g. number of network layers
- Categorical, e.g. optimization methods (SGD, Adam,...)
- Conditional, e.g. HPs in Adam if selected

EXAMPLE

$$\begin{split} \phi &: \text{Model parameters} \quad \theta : \text{Hyperparameters} \\ \text{Neural networks} \\ y &= g_N(g_{N-1}((...g_1(x)))) \qquad \theta := \{A_i, b_i\} \\ g_i(x) &= \sigma_i(A_ix + b_i), A_i \in \mathbb{R}^{m_i \times n_i}, b_i \in \mathbb{R}^{n_i} \quad \sigma_i : \mathbb{R}^{n_i} \to \mathbb{R}^{n_i} \\ & \underset{N}{\overset{N}{\longrightarrow}} \end{split}$$

$$L(y, \hat{y}) = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$
 Multi-label classification

Neural network hyperparameter θ :

Learning rate, loss function, mini-batch size, number of epochs, momentum, number of hidden units, weight decay, nonlinearity, weight initialization, layer types(full, convolution, pooling), batch normalization, layer connections, dropout...

HPO METHODS

- Theoretical derivations
- Information criteria (Bayesian, Akaike,...)
- Fully Bayesian approach/Evidence framework
- Ensemble methods
- Grid search cross validation
- Random search cross validation
- Bayesian optimization
- Successive Halving / HyperBand

THEORETICAL DERIVATIONS

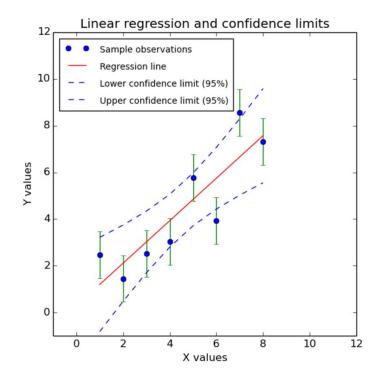
Example: Linear regression

$$y = ax + b + \varepsilon$$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ \blacktriangleright $L(x) = x^2$

Emphirical risk:

$$\hat{R}_N(a,b) := \frac{1}{N} \sum_{i=1}^N (y_i - ax_i - b)^2$$

$$\hat{a}, \hat{b} = \arg\min_{a,b} \hat{R}(a,b)$$



Seite 12

FULLY BAYESIAN APPROACH

If HP can be modeled by random variable within a probabilistic approach, they could be integrated out

$$p(\tilde{y}|\tilde{x}) = \int p(\tilde{y}|\tilde{x}, \phi, \theta) p(\phi, \theta|\mathcal{D}) d\phi d\theta$$

Downside: Closed form solution only for few distributions

Alternatives: Numerical approximations with ensemble approaches

EVIDENCE FRAMEWORK

Alternative terms: Type-II likelihood, marginal likelihood

If HP can be modeled by random variable and the its likelihood can be derived, we can estiamte the hyperparamter

$$p(\mathcal{D}|\theta) = \int p(\mathcal{D}|\phi,\theta)p(\phi)d\phi$$

Downside: Closed form solution only for few distributions

Alternatives: Approximate distributions by simple pdfs first (e.g. variational approximation), then apply evidence approximation

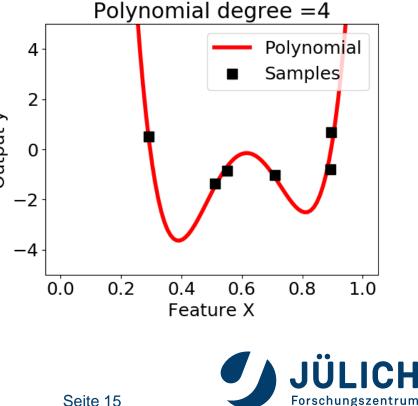
MODEL SELECTION

Example: Polynomial regression

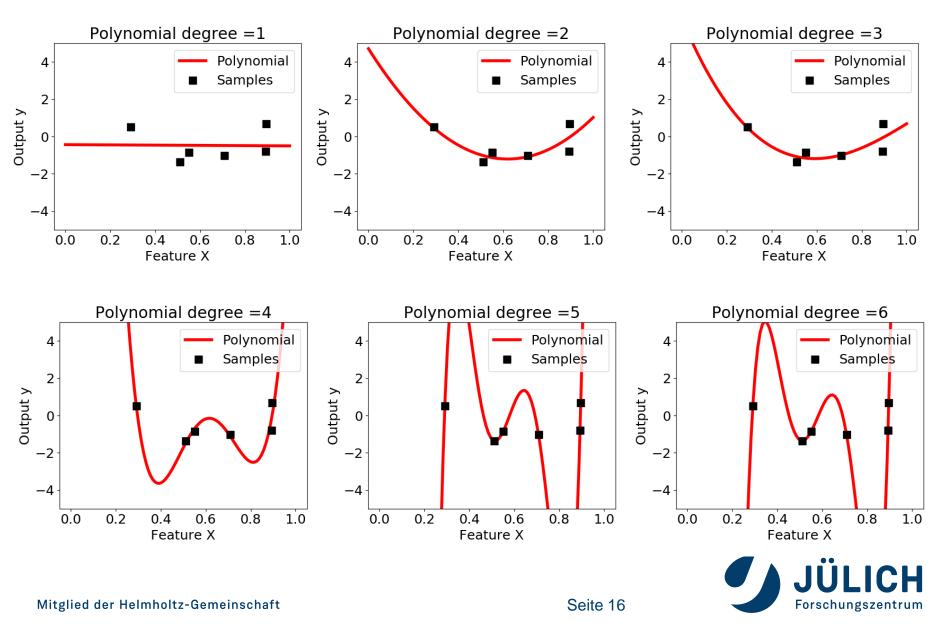
$$y = a_0 + a_1 x + \dots + a_q x^q = \vec{a}^T \vec{x_q}, \ \phi = (a_1, a_2, \dots, a_q)$$

$$\vec{x_q} := (1, x, \dots, x^q) \qquad \qquad \theta = q$$

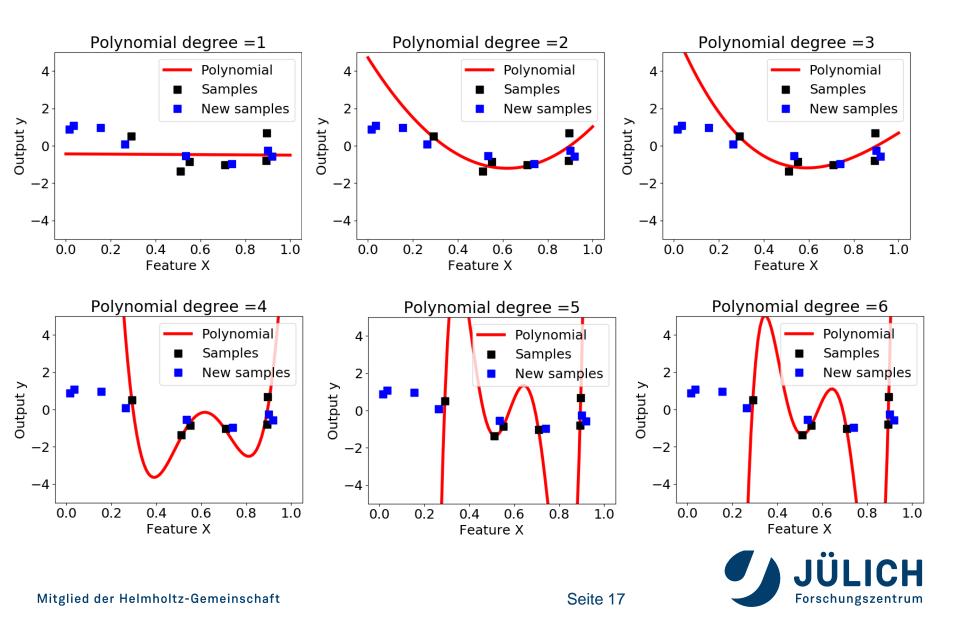
Emphirical risk: 4 $\hat{R}_N(\vec{a}) := \frac{1}{N} \sum_{i=1}^N \left(y_i - \vec{a}^T \vec{x}_n \right)^2$ 2 Output y 0 $\hat{\vec{a}} = \arg\min_{\vec{a}} \hat{R}(\vec{a})$ -2 -4



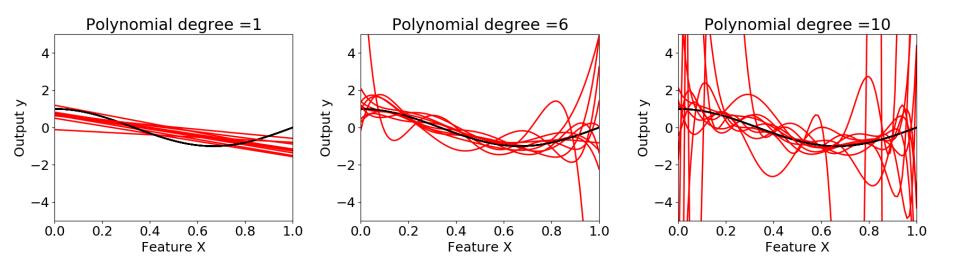
EXAMPLE: POLYNOMIAL REGRESSION

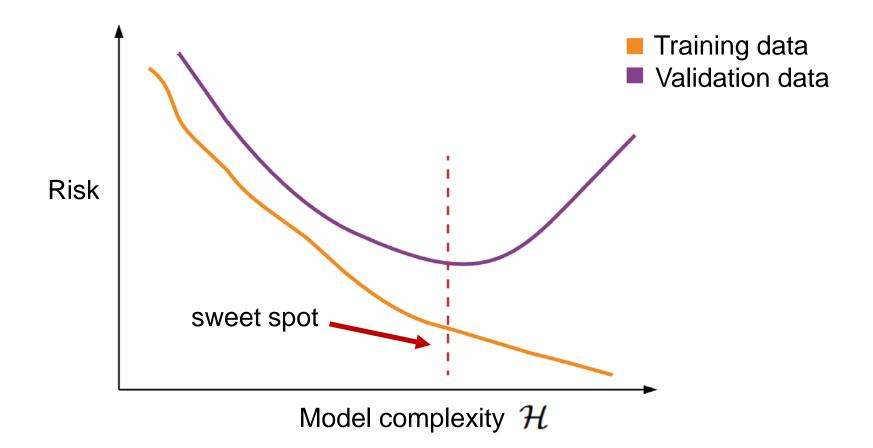


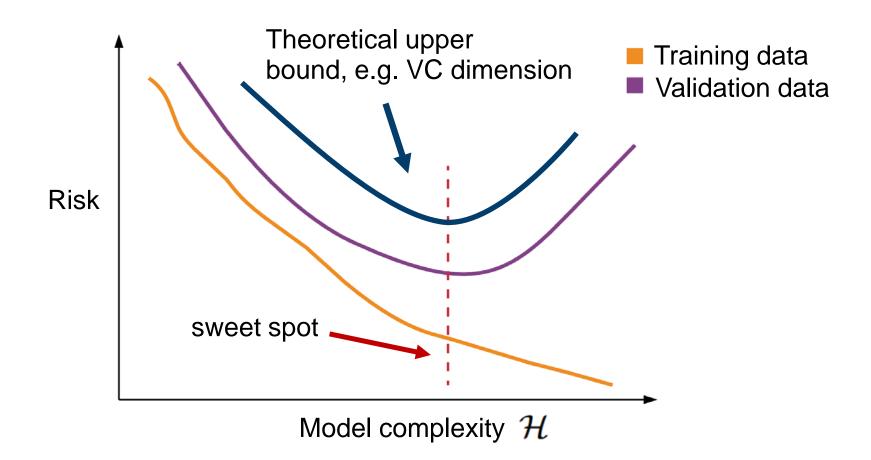
EXAMPLE: POLYNOMIAL REGRESSION

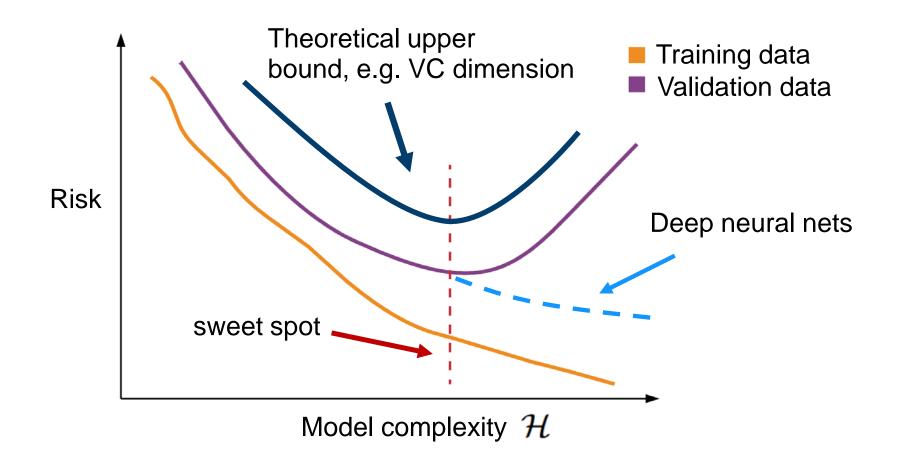


Learn the model on different training sets (#samples=6)



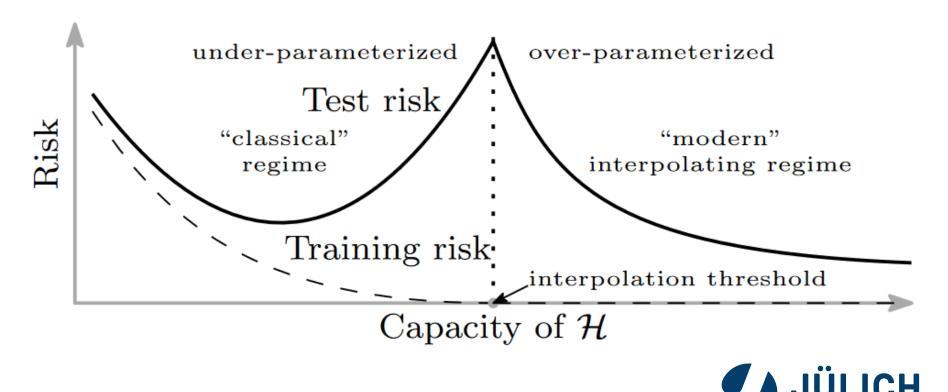






DOUBLE DESCENT CURVE

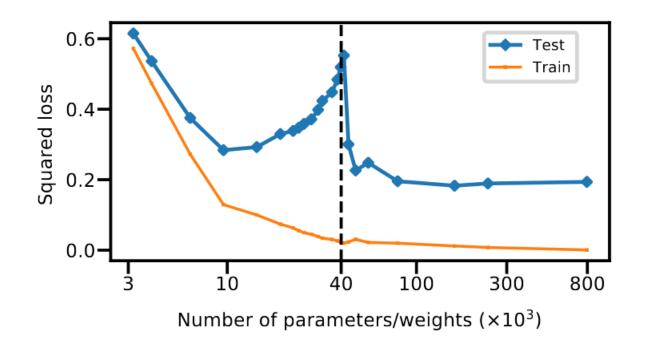
Belkin *et al.* (2019) proposed a double descent curve for high capacity models



Forschungszentrum

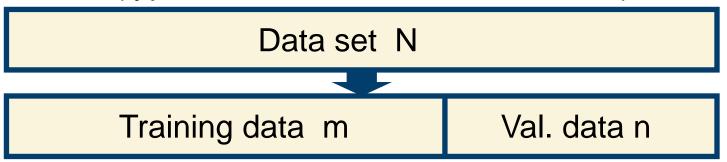
DOUBLE DESCENT CURVE

... and emphirically found them in a couple of models, e.g. One hidden layer NN trained on 4000 MNIST images



HOLDOUT METHOD

Idea: Split the available data into training data and validation data (typical: validation data 20% to 40%)



1) Train parameters for fixed hyperparameters on training data according to the emphirical risk:

$$\hat{R}(f) := \frac{1}{m} \sum_{i=1}^{m} L(y_i, f(x_i))$$

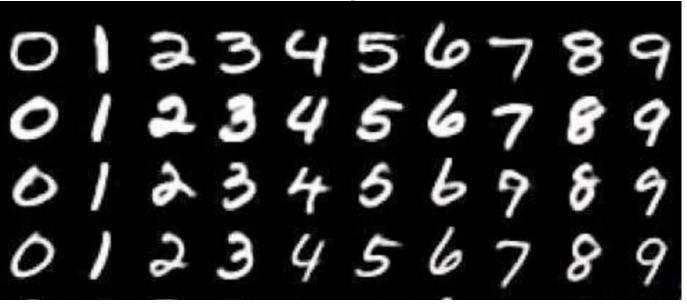
2) Repeat 1.) for several sets of hyperparameter and compare the models on the validation data

$$\hat{R}(f) := \frac{1}{n} \sum_{i=m+1}^{m+n} L(y_i, f(x_i))$$

HOLDOUT METHOD

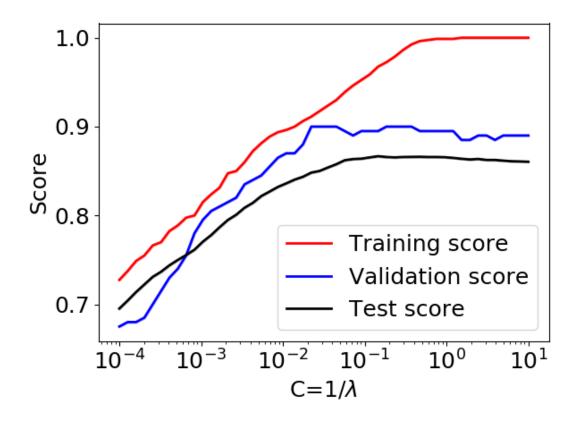
Example: Logistic ridge regression on MNIST Dataset $y = \sigma \left(\vec{a}^T \vec{x} \right), \ L(y, \hat{y}) = \sum_{i=1}^N y_i \log(\hat{y}_i) + (1 - y_i) \log(\hat{y}_i) + \lambda \|\vec{a}\|^2$ σ : Sigmoid function $\Phi = \vec{a} \ \Theta = \lambda \ \vec{x} \in \mathbb{R}^{784}$

MNIST Data (60k training data, 10k test data)



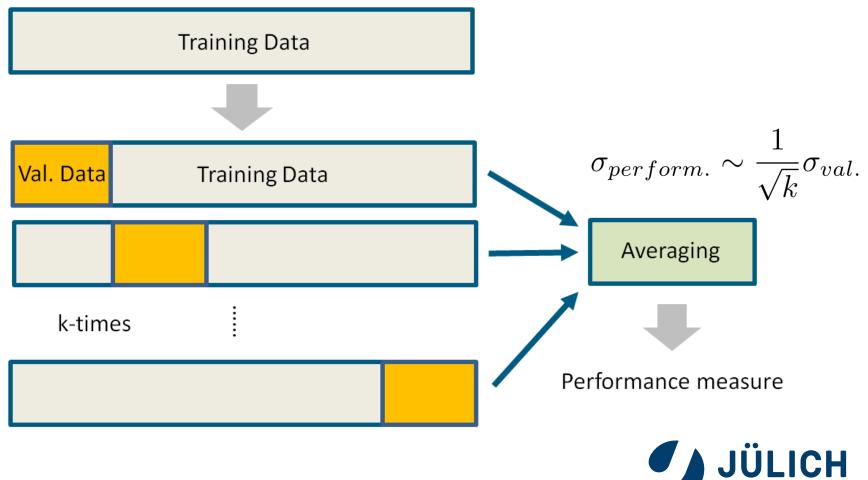
HOLDOUT METHOD

Example: Logistic ridge regression on MNIST Dataset # of training images: 800, # of validation images: 200 # of test images: 9000



CROSS VALIDATION

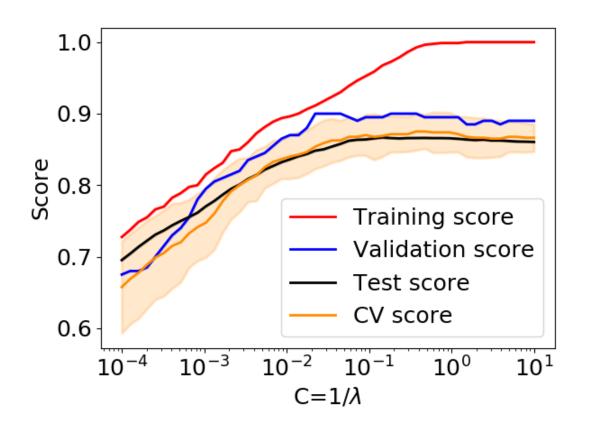
 Trainings data is divided into k non-overlapping patches (k-fold cross validation)



Forschungszentrum

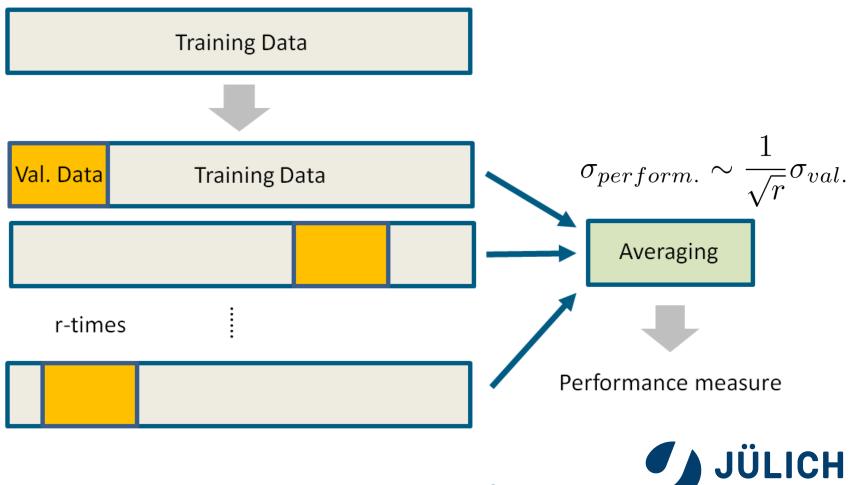
K-FOLD CROSS VALIDATION

Example: Logistic ridge regression on MNIST Dataset # of training images: 800, # of validation images: 200 # of test images: 9000 10-Fold cross-validation on 1000 samples



RANDOM SAMPLING

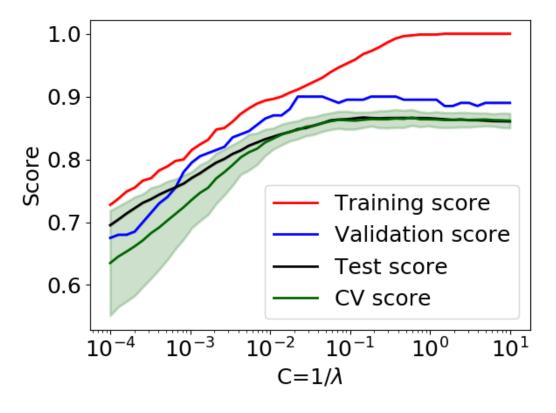
 Trainings data is divided into r random overlapping patches (repeated random sub-sampling validation)



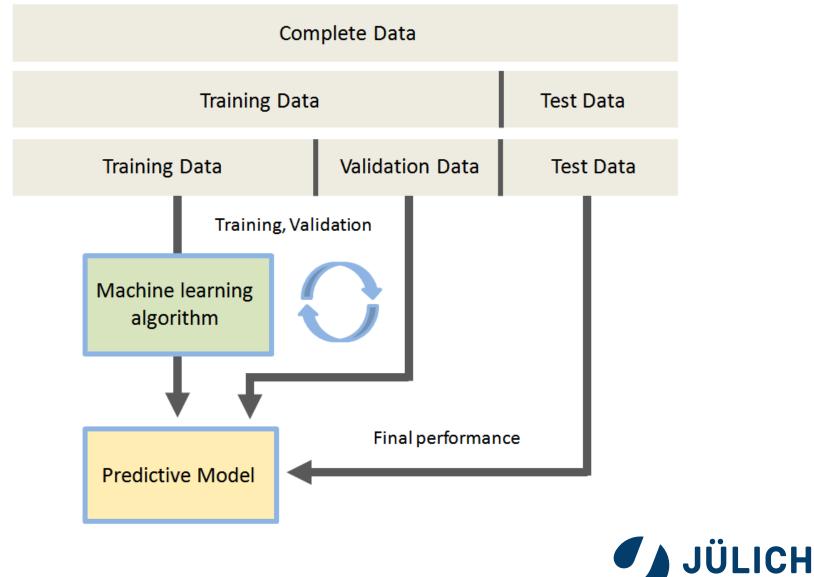
Forschungszentrum

RANDOM SAMPLING

Example: Logistic ridge regression on MNIST Dataset # of training images: 800, # of validation images: 200 # of test images: 9000 random sampling with 40% validation data of 1000

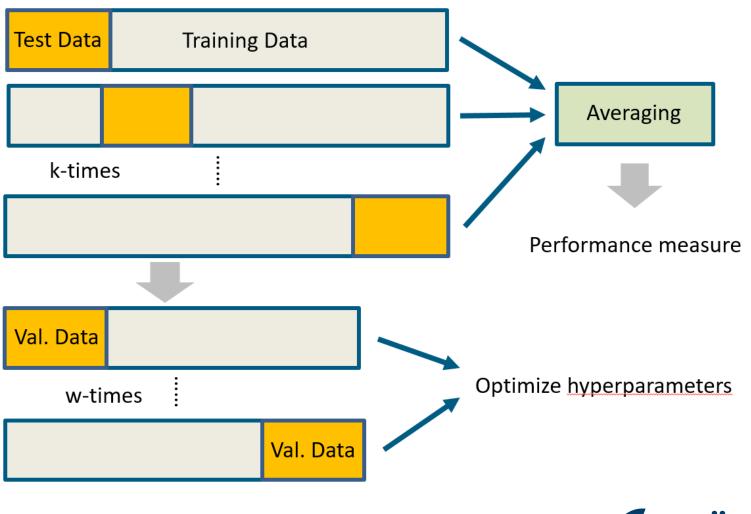


MODEL COMPARISON



Forschungszentrum

NESTED CROSS-VALIDATION



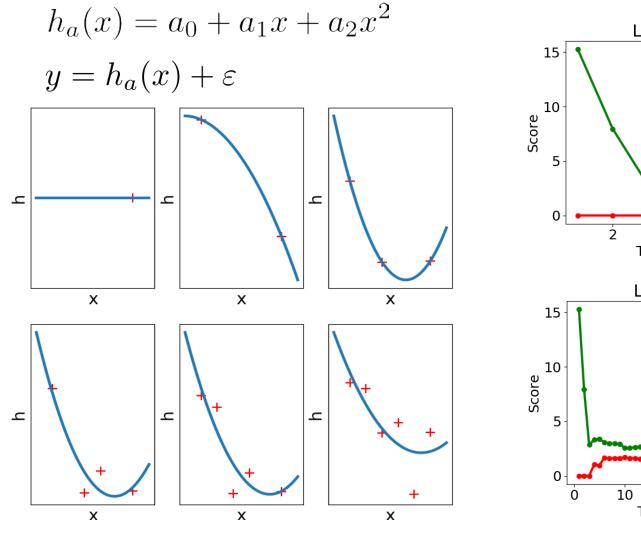
Mitglied der Helmholtz-Gemeinschaft

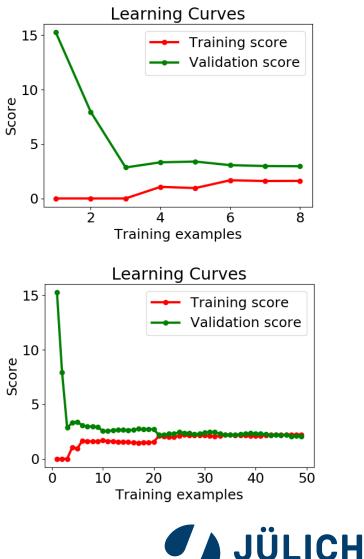
LEARNING CURVE

Cross validation allows to estimate the "sweet spot" but does not allow to judge if enough training data is used

- optimal tradeoff bewtween training and validation/test data
- the need to obtain more data
- Idea: Train the model on subsets of the training data and observe ist performance as amount of data used for training increases

LEARNING CURVE



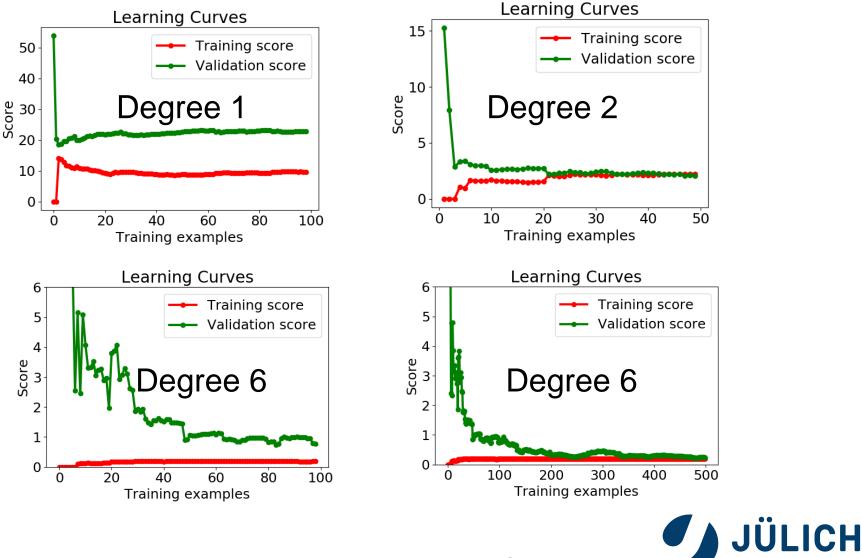


Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

Seite 34

LEARNING CURVE



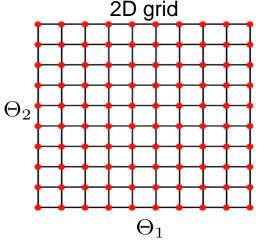
Mitglied der Helmholtz-Gemeinschaft

Seite 35

Forschungszentrum

GRID SEARCH

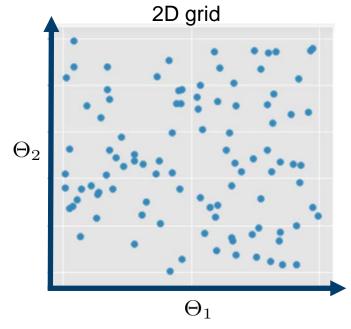
- Exhaustive search through a manually specified subset of the hyperparameter space
- Apply CV on each hyperparameter set
- Full parallelizable as model applied independently on each hyperparameter set
- Suffers from the curse of dimensionality, *e.g.* 10 hyperparameter per dimension
 10¹⁰ for dim=10



RANDOM SEARCH

Random search tend to be less expensive and time consuming because they do not examine every possible combination of parameters

Randomly selects a chosen number of hyperparameter sets from a given domain and tests only those



RANDOM SEARCH

Advantages:

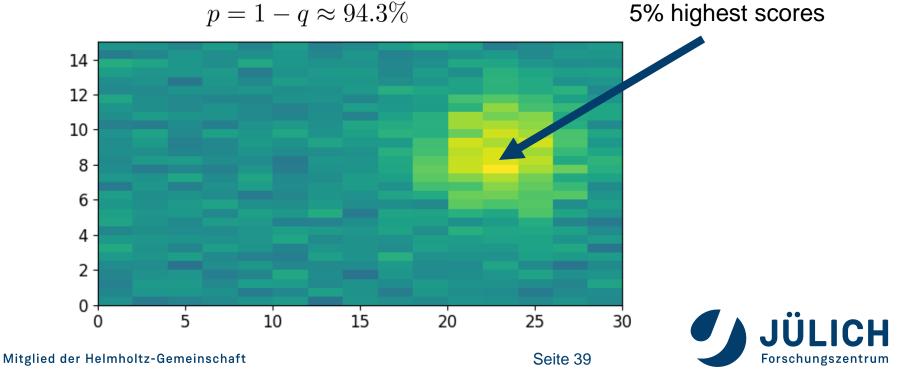
- The experiment can be stopped any time and the trials form a complete experiment
- New trials can be added to an experiment without having to adjust the grid and commit to a much larger experiment
- Scales independent of the input dimension
- Good coverage, e.g. if the region of hyperparameters that are near optimal occupies at least 5% of the grid, then random search with 60 trials will find that region with high probability (94%).

RANDOM SEARCH - EXAMPLE

Highlighted in green are the 21 pairings with the highest scores out of the 450 total combinations Probability not to hit the yellow area with 60 trials

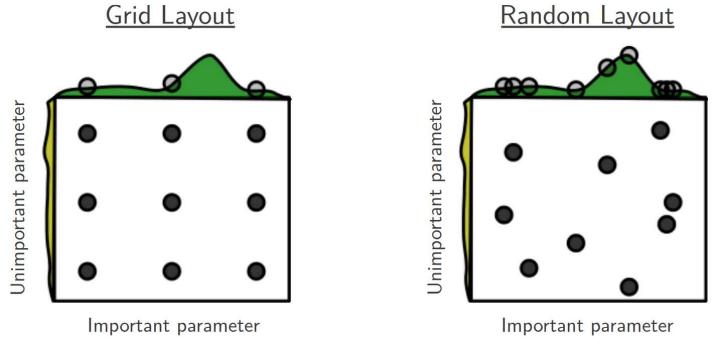
$$q = \left(1 - \frac{21}{450}\right)^{60} \approx 5.7\%$$

Probability to hit the green area with 60 trials



RANDOM SEARCH – GRID SEARCH

If some hyper-parameters are unimportant for the model grid search waste computing time



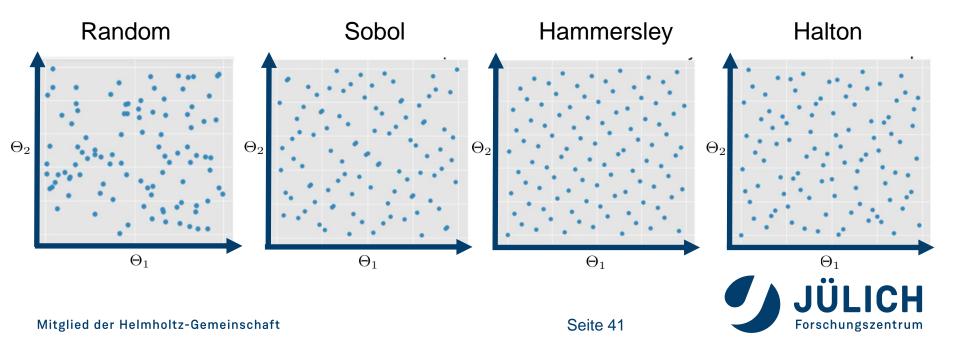
Bergstra and Bengio: Random Search for Hyper-Parameter Optimization, IJML, 2012

QUASI – RANDOM SEQUENCES

Few random samples tend to form clusters and wholes

Domain not covered evenly

Quasi-random sequence is a deterministic irrelgular sequence with the property that for all values of N, its subsequence $x_1, ..., x_N$ has a low discrepancy



BAYESIAN OPTIMIZATION

As the evaluation of the validation empirical risk is usually costly we want to use previous experience to choose the next HP configuration

Idea: Learn a surrogate of the validation expected risk that is cheap to evaluate and provide a confidence interval to determine the next grid point

 $S(\Theta) \approx \hat{R}(f_{\Theta})$

Search the hyperparameter space with

- **Exploration:** Seek places with high variance in expected risk
- **Exploitation:** Seek places with low expected risk

GAUSSIAN PROCESSES

A Gaussian process defines a probability distribution p(f) over functions $S: \mathbb{R}^N \to \mathbb{R}$

Notice: *S* is an infinite-dimensional quantity

No explicit probability distribution can be defined

Consider the vector $\vec{S} := (S(x_1), S(x_2), ..., S(x_N))$ of function values evaluated at finite number of positions

Definition: A Gaussian Process GP is a collection of random variables of which each finite sample is a multivariate Gaussian distribution $\vec{S} \sim \mathcal{N}(\vec{m}, \Sigma)$

GAUSSIAN PROCESSES

Definition: A Gaussian Process (GP) is a collection of random variables of which each finite sample is a multivariate Gaussian distribution

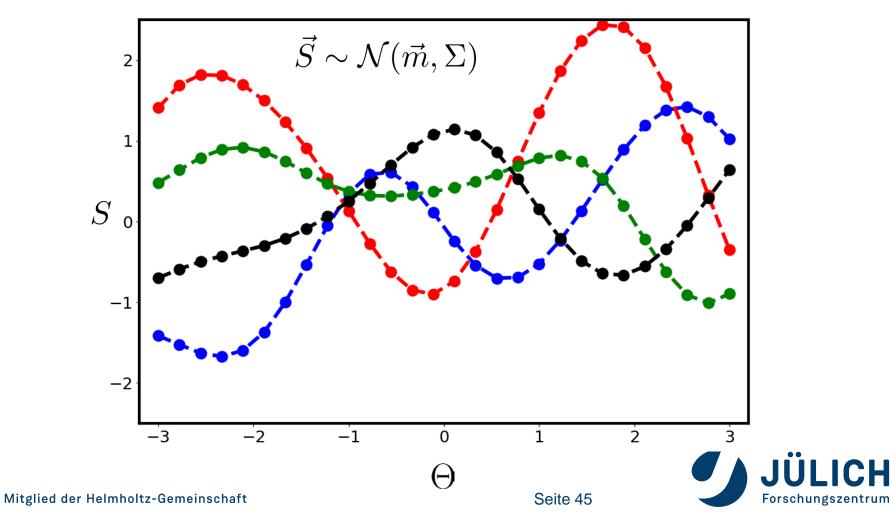
A Gaussian process is fully determined by its *mean* function $m(x) = \mathbb{E}[S(x)]$

and *covariance function* (kernel)

$$K(x, x') = \mathbb{E}[(S(x) - m(x))(S(x') - m(x'))]$$

MULTIVARIATE GAUSSIAN

How to sample functions? Lets start with sampling from multivariate Gaussian and interpolate points

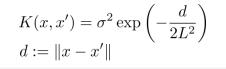


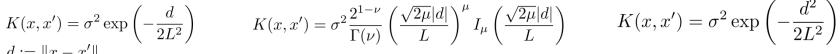
KERNEL FUNCTIONS

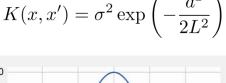
Exponential kernel

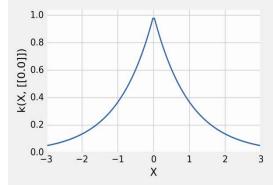


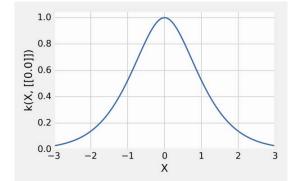
RBF kernel

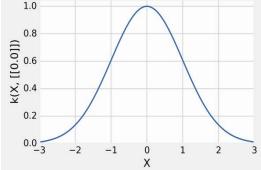


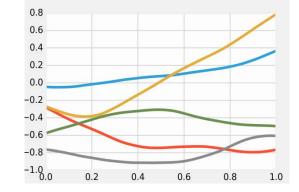


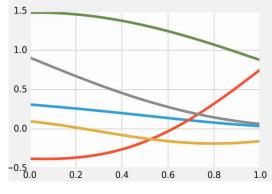












Mitglied der Helmholtz-Gemeinschaft

Seite 46

GAUSSIAN PROCESSES

- $y \in \mathbb{R}^m$ Observed samples
- $S \in \mathbb{R}^N$ Positions to be evaluated

$$(S,y) \sim \mathcal{N}\left(\vec{0}, \begin{pmatrix} K & K_* \\ K_* & K_{**} \end{pmatrix}\right) \Longrightarrow S|y \sim \mathcal{N}(m_{post.}, K_{post.})$$

Posterior mean

Posterior Covariance

$$m_{post.} = K_* K^{-1} y \qquad K_{post.} = K_{**} - K_* K^{-1} K_*^T$$

GAUSSIAN PROCESSES

Kernels need to be choosen (model selection) and kernel parameter have to be set

We are faced with additional hyperparameters

But GP allow to use additional hyperparameter Optimization techniques

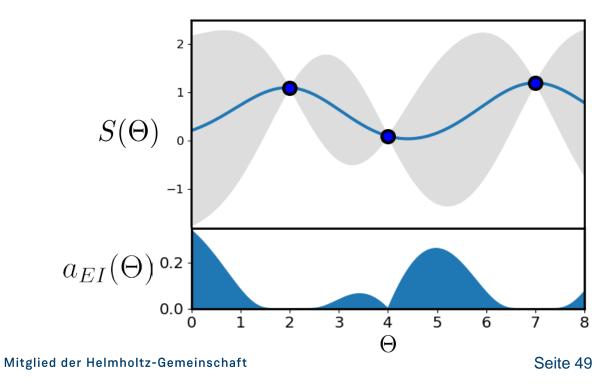
- Marginal likelihood (evidence framework)
- Fully Bayesian approach

ACQUISITION FUNCTION

We need some criterion to select a new grid point based on our GP surrogate model

Expected Improvement (Mockus 1978):

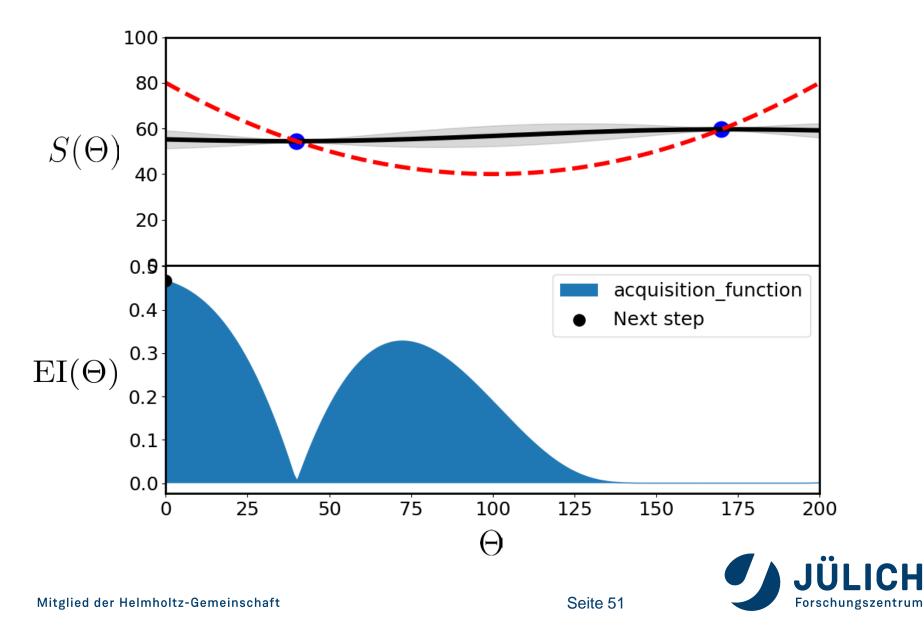
$$a_{EI}(\Theta) = \int \max \left(S(\Theta_{min}) - S(\Theta) \right), 0 \right) p(S(\Theta), m_{post.}, K(\Theta, \Theta)) df$$
$$= \left(S(\Theta_{min}) - m_{post.}(\Theta) \right) \Psi + K(\Theta, \Theta) p(S(\Theta), m_{post.}, K(\Theta, \Theta))$$

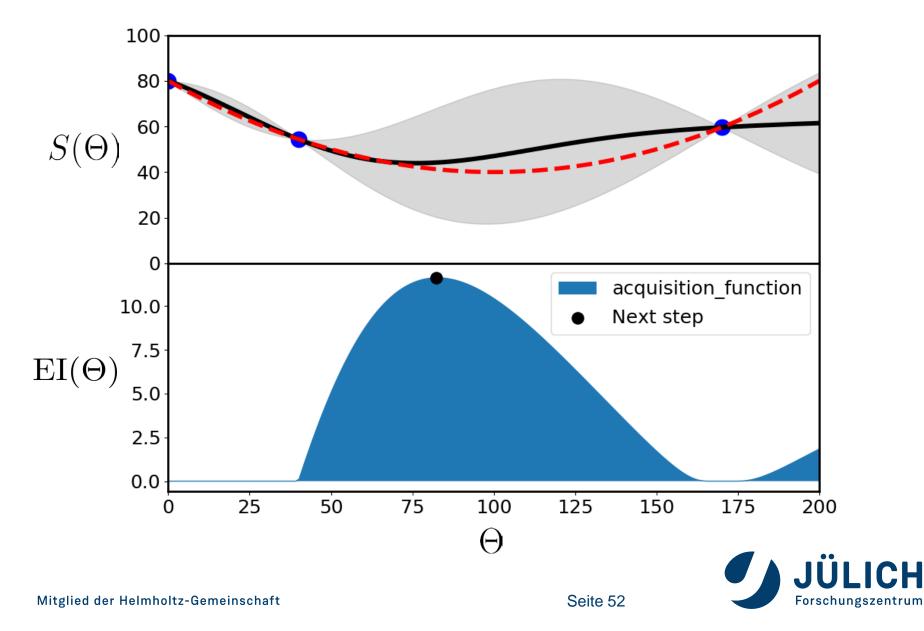


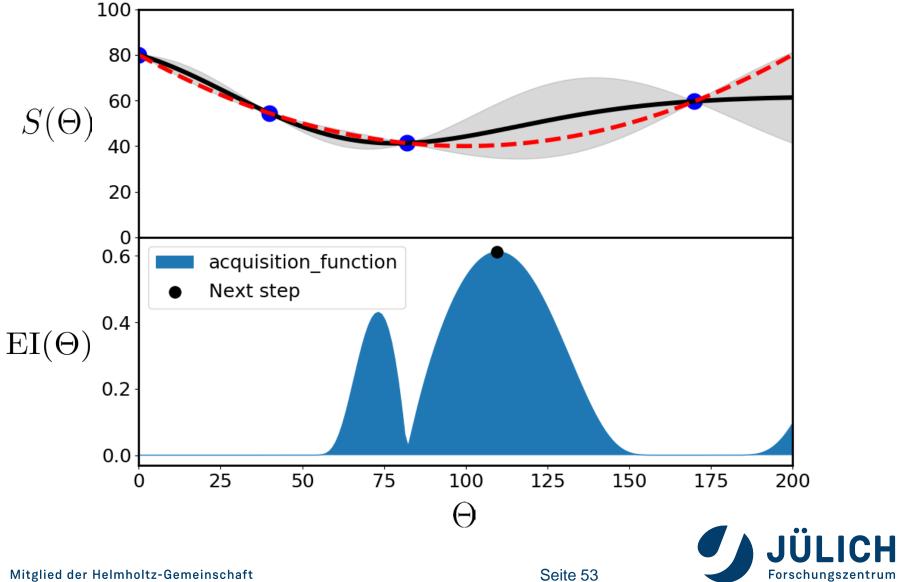
BAYESIAN OPTIMIZATION

We combine all steps to Bayesian optimization

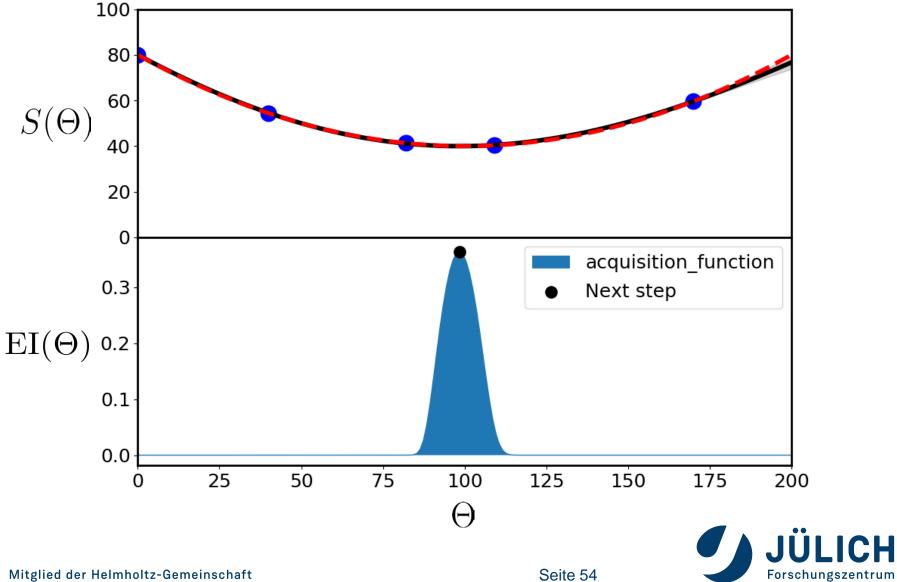
- 1) Evaluate $\hat{R}(f)$ for some grid points, e.g. random search
- 2) Estimate a GP surrogate model based on current grid points
- 3) Optimize GP hyperparameters by Evidence/Fully Bayesian
- 4) Compute an aquisition function
- 5) Select a new grid point by maximizing the aqusition function
- 6) Go to 2) or stop if $\hat{R}(f)$ does not change any more



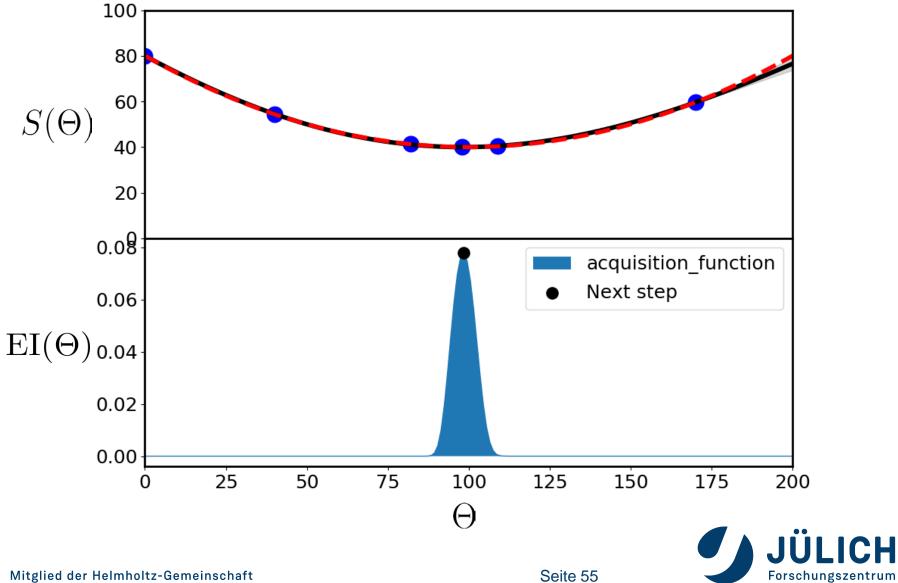




Mitglied der Helmholtz-Gemeinschaft



Mitglied der Helmholtz-Gemeinschaft



Seite 55

EXTENSIONS

GPs do not scale well with the number of risk evaluations $O(n^3)$

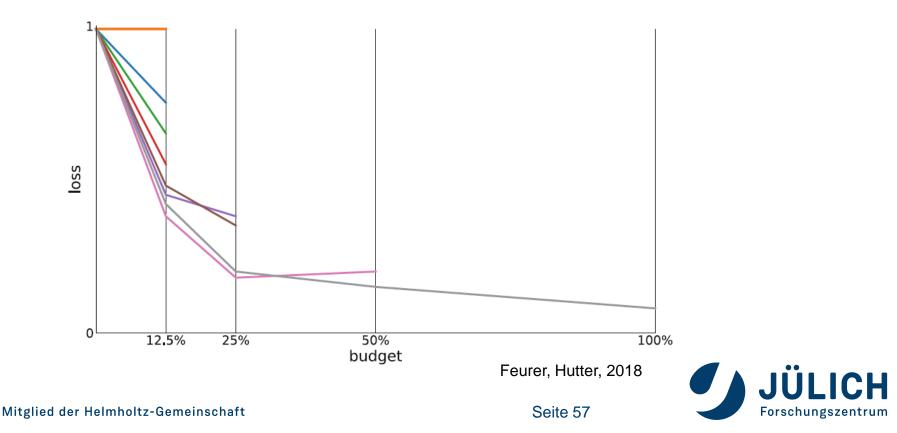
Further developments:

- Sparse Gaussian processes (Hutter et al. 2010)
- Neural nets combined with Bayesian linear regression (Snoek et al. 2015)
- Bayesian neural nets sampled with MCMC (Springenberg et al. 2016)
- Random forests (Hutter et al. 2011)
- Tree parzen estimator (Bergstra et al. 2011)

SUCESSIVE HALVING

Fully training ML algorithm does not allow many risk evaluations **Multi fidelity approach:** Allow reduced training/modelling (e.g. train on a subset of data, train a few epochs etc.)

Sort out low performant instances and continue with remaining instances



HYPERBAND

Downside of sucessive halving: Budget (number of HP instances) is fixed

HyperBand: Divides the total budget into several combinations of number of configurations vs. budget for each, to then call successive halving as a subroutine on each set of random configurations.

BO + HyperBand: Select the HP configuration in HyperBand according to BO

META-LEARNING

Meta-Learning: Build a ML method based on data from other ML methods (e.g. loss function values, gradients etc.)

Application to HPO: Learn a ML model to learn HP based on the optimizee

Example: Consider the SGD update for the model f_w

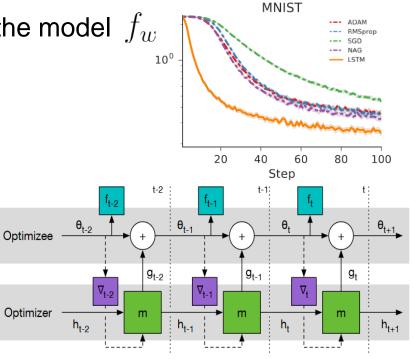
$$w^{t+1} = w^t - \eta_t \nabla L(w^t)$$

as a map of ML model

$$w^{t+1} = g_{\phi}(\nabla L(w^t))$$

Train by f_w minimizing

$$L(\phi) = \sum_{j=1}^{T} L(w_j(\phi))$$



Andrychowicz et al. 2016

Seite 59

CHALLENGES IN HPO

Benchmarks and Comparability

Scalability

Overfitting

Meta-Learning

Arbitrary sized ML pipelines

