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Object detection among computer vision 
tasks
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Object detection: given an input image, predict the locations of a certain class of objects in 
the image

Locations are usually represented using  bounding boxes 
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Historic object detection
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Out of scope

• Handcrafted features:

• Haar-like

• Histograms of Oriented Gradients (HOG)

• …

L. Liu et al., Int J Comput Vis (2019)

• Region proposals

• Sliding window

• Selective search

• …

Object detection before 2012:

Define region proposals → Calculate features for each region → Classify each region
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CNN era

Alexandr Ignatenko, 27.01.2020

Talk of  T. Kerola (2019)

Object detection after 2012:

• 2-stage methods

• R-CNN

• Fast R-CNN

• Faster R-CNN

• …

• Single-shot methods

• SSD

• YOLO

• …
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Understanding of CNN

Alexandr Ignatenko, 27.01.2020

CNN for classification

• Feature learning part is trained on the largest annotated data set 

• Classification part is trained for custom classes
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Understanding of CNN
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Convolutional layer

http://cs231n.stanford.edu/

…
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Understanding of CNN

Alexandr Ignatenko, 27.01.2020

Pooling layer

Other pooling functions: min, average, L2 norm …



Popular object 
detectors
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R-CNN

Alexandr Ignatenko, 27.01.2020

O
R. Girschick et al. (2014)

• Extract region proposals (RoI) via selective search

• Classify regions with SVM
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Fast R-CNN

Alexandr Ignatenko, 27.01.2020

• Extract proposals  via selective search

• Extract features and classify with CNN

R. Girschick et al. (2015)
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Faster R-CNN

Alexandr Ignatenko, 27.01.2020

• Region Proposal Network is introduced

• Extract proposals, compute features and classify with CNN

Jointly train with 4 losses

http://cs231n.stanford.edu/
Modified picture from Sh. Ren et al. (2015)
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SSD
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• Predict class and bounding box at each feature scale

W. Liu et al. (2016)



YOLO
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YOLOv2 principle

Alexandr Ignatenko, 27.01.2020

Coarse spatial representation

“Backbone” – pretrained CNN for feature extraction 

Pictures from https://www.jeremyjordan.me/object-detection-one-stage/
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YOLOv2 principle
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Coarse spatial representation

O
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YOLOv2 principle
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Rough object center

O
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YOLOv2 principle

Alexandr Ignatenko, 27.01.2020

Anchor boxes

5 bounding box priors (anchor boxes) for each grid cell. Each of 5 bounding boxes 
specializes in detecting objects of a specific size and aspect ratio

YOLOv2 predicts offsets to each of the anchor boxes instead of predicting arbitrary 
bounding boxes
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YOLOv2 principle

Alexandr Ignatenko, 27.01.2020

Bounding box descriptor

Filter the predictions to only consider bounding boxes which has a pobj above 
some defined threshold



Page 21

YOLOv2 principle

Alexandr Ignatenko, 27.01.2020

Non-max suppression



Page 22

YOLOv2

Alexandr Ignatenko, 27.01.2020

45

45

Add 2 convolutional layers to make S×S ×B(5+C) predictions

S=13
B=5
C=4
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YOLOv3
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• Residual network

• Detection at multiple scales
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YOLO compared to other object detectors
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http://pjreddie.com/yolo9000/



Application for 
classification of 
diffraction patterns in 
SPI experiments



Page 26

Single Particle Imaging (SPI)

Alexandr Ignatenko, 27.01.2020

• SPI is a method for native structure 
determination

• Particles are injected and delivered into 
X-ray beam

• Forward scattering wave front 
propagates and is recorded by detector

• Large amount of data is collected

Data pre-processing → filtering → classification → object structure reconstruction 
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SPI experiment @ LCLS in 2018

Alexandr Ignatenko, 29.11.2019

• AMO beamline at LCLS

• Sample – bacteriophage PR772, expected size 60-75 nm

• E = 1.7 keV (λ = 7.29 Å)

• Sample-detector distance = 125 mm

• Detector – pnCCD, a half of it was operational
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SPI experiment @ LCLS in 2018

Alexandr Ignatenko, 29.11.2019

Positive examples: Negative examples:

Subtracted background, photon counts
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Training and validation sets

Alexandr Ignatenko, 29.11.2019

Positive set

• 165 patterns in the size range 
60 -75 nm

Negative set

• 373 carefully selected patterns across all 
runs

Training set

Positive set

• 53 patterns in the size range 
60 -75 nm

Negative set

• 200 carefully selected patterns across all 
runs

Validation set
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Training and model choice
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Typical training loss Apply model with the saturated F1 score

Metrics

Iterations

Lo
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Results

Alexandr Ignatenko, 27.01.2020

Model run on ~18k patterns filtered by particle size 
86%

1036 patterns selected

EMC reconstruction with 1036 patterns EMC reconstruction with EM-based selection for 
comparison
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Summary & outlook

Alexandr Ignatenko, 29.11.2019

• CNN-based selection of single hits is promising – it was possible to make 
reasonable selection

• Further steps:

• Supplement training and validation data with simulated examples
• Use residual network
• Use intensity values instead of 3D color scheme as an input
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