Project Review Panel PETRA III 4-5 Nov 2019

O.H. Seeck / H.-C. Wille

Content

- Current PRPs
- PRP rating guideline
- Proposal types at PETRA III
- New structure of PRPs starting in 2020
- General information on PETRA III
- PETRA III Schedule 2020

Next deadline for regular proposals: 2 March 2020

Next PRP meetings: 27 - 28 April 2020 26 - 27 October 2020

Current Project review panels (PRP) at PETRA III

This is the last PRP of this kind: the next review in March/April 2020 will be organized differently

80% of the beamtime is dedicated to externally peer-reviewed proposals

The proposals are to be rated according to scientific excellence **AND expected outcome**

Different PRP schemes exist at the different sources

PETRA III has comparably low number of beamlines

- \Rightarrow Beamlines are mostly dedicated to methods
- \Rightarrow Most beamlines serve different scientific topics
- \Rightarrow Cluster the expertise of the reviewers within "field related PRPs"
- \Rightarrow Some PRPs may still serve mainly one beamline

PETRA III: PRPs serving scientific fields

PRPs serving (groups of) beamlines

Title of the PRP

Moritz Hoesch VUV- and Soft X-ray X-ray Absorption Spectroscopy Applications Wolfgang Caliebe & Edmund Welter **HAXPES** Applications Christoph Schlüter Nuclear & Inelastic Scattering & X-ray Emission Applications Hans-Christian Wille **High Pressure and Extreme Conditions** Hanns-Peter Liermann **Engineering Materials Science Dieter Lott & Ulrich Lienert** Soft Condensed Matter: Bulk **Rainer Gerhke** Soft Condensed Matter: Surfaces and Interfaces **Oliver Seeck** Imaging (full-field, scanning, coherent) Gerald Falkenberg & Felix Beckmann Methods and Instrumentation Horst Schulte-Schrepping Hard Condensed Matter: Surface and Coherent Scattering Michael Sprung Hard Condensed Matter: Bulk (diffraction and scattering) Ann-Christin Dippel PEC: EMBL Life Science beamlines P12-P14 and Bio-crystallography at P11 by EMBL

3

PRP Secretary (DESY & HZG)

The rating of proposals is based on

- Scientific excellence (most important criteria)
- Expected impact (publications)
- Necessity of using PETRA III beamlines
- Reports on previous experiments (if applicable)

For new LTPs additionally:

Necessity of applying for LTPs instead of a few regular proposals (project plan)

→ Please agree on a message to the proposer during the meeting whenever useful
 → Every rejected proposal will automatically receive this message
 → Every rejected proposal without dedicated message will receive a standard message : "Well received, but no beam time due to cut-off "

PRP rating system : average per PRP is 2.5 (last time → obsolete in future)

Several PRPs are serving one beamline => the rating system has to be reasonably normalized

Correction done by the PRP secretary (last time → obsolete in future)

Regular & Long Term Proposals (LTP) & Block Allocation Group (BAG) Proposals

1) A regular proposal covers one run (usually 6 months) (proposal ID : I-2019xxxx) The beamtime can be split into two parts if required

2) An LTP covers 4 runs (usually 6 months each) (proposal ID : II-2019xxxx)

Boundary conditions

- The maximum number of shifts (integrated) is 72 (as entered in the application)
- The maximum number of LTPs per beamline is 2 (or 3 with lower number of shifts)
- LTPs require a project plan with strong interconnection of the four runs
- LTPs require a benefit for the beamline, usually some instrumentation staying at the beamline
- For each run a "beamtime applications" has to be submitted
- The PRPs should evaluate the outcome of running LTPs and may decide to stop it.

If e.g. 4 LTPs applications are in the pipeline for one beamline but only 1 is available, 3 will be rejected no matter what the rating is !

3) A BAG covers 4 runs (usually 6 months each) (proposal ID : BAG-2019xxxx)

Boundary conditions

- Must a collaborative effort of at least five groups working an one project
- Similar boundary conditions as LTP but no additional benefit for the beamline required.

FUTURE PRP system: starting with next review in April 2020

P05 & P06

(imaging)

P02.2 & P61B (high pressure)

- reviewer has no control whether proposal receives beamtime

8

- before the PRP meeting: Reviewers RATE the proposals (as in previous system)
- before the PRP meeting: PRP secretaries generate a tentative RANKING for each beamline
- During PRP meeting: all proposal will be RANKED at EACH beamline (based on tentative ranking)
 → e.g. in the XAFS PRP the ranking will be done for both beamlines separately
- 60-70% of available beamtime will be directly distributed by the PRP based on ranking
- for approx. 30-40% of beamtime priority access applies (depending on beamline)
 → e.g. Sweden (partially following the PRP ranking), India@DESY (following Indian review), running LTPs & BAGs, existing collaborations, industry)
- Cancelation of a granted proposals by user: fallback proposal will receive beamtime based on the PRP ranking

Future PRP: tentative re-distribution of members to new PRPs

Your activity as PRP member will continue in the new PRP system

- \rightarrow If you do **not** wish to continue in the BL-based PRP system please let us know.
- \rightarrow The total duration of your mandate (~ 3 years) will not be extended by the redistribution (as long as not agreed otherwise)
- \rightarrow Exception: We will not dismiss any reviewer before the next call unless requested by the reviewer her-/himself

Future PRPs defined by beamline or clusters of beamlines. Some PRPs will remain the same, some will be redistributed

PRPs already in place:

- XAFS P64 / P65 Proposals without experts in BL – PRPs will HAXPES P23 **Extreme Conditions** P02.2 / P61.DESY be evaluated by members of other PRPs • P05 / P06 Imaging lacksquareVUV and Soft X-rays P04 (in future also P66 Superlumi) New PRPs (tentative): HZG P07 / (P61) P08 / P23 not all groups finally defined, redistribution of reviewers
 - will be discussed and communicated soon

PRP "Method and Instrumentation" will not continue!

10

- P21 / P07 DESY •
- P01 / P09 / P24 lacksquare
- P03 / P62 •
- P10 •
- P02.1

From your PRP secretary

- Get your reimbursement forms
- Register for TAXI transport and later get a TAXI voucher (if required). (TAXIs can be ordered at the main gate (tel. 3333))
- Get a lunch voucher (if required)

We will keep you informed about the changes of the PRP system at PETRA III

Have good discussions

Thank you for being available and for acting as reviewer for the PETRA III proposals

PETRA III: Some information you may be interested in.

- > particle energy:
 > stored current:
 > emittance:
 > circumference:
 > # of undulators:
 > # of experiments:
 > X-ray wavelength:
 > annual operation:
- 6 GeV 100 mA (top-up) 1.3 nmrad 2304 m 26 (incl. canted) 50 10 – 0.05 Å 5000 h (target value)
- > built in 1978 rebuilt as SR source starting in 2007
- > user operation since 2010
- > shutdown for PETRA III extension: March 2014 April 2015
- > First beam in PETRA III extension BL P65 : November 2015
- > 22 beamlines are taking regular users
- > Coming up in 2020/21 : White Beam Materials Science & High Pressure, Anomalous SAXS, Luminescence

3 Halls – 15 Sectors – 22 Beamlines

Schedule of PETRA III in 2020

März	April	Mai	Juni	2020	Juli	
2020	2020	2020	2020	2020	2020	
tr	#	. 40	. 40	1	#	
. StrSch multi	. multi	. 40	. 40	2	. multi	
. StrSch multi	. multi	. 40	#	3	. multi	
#	. multi	. 40	. 40	4	. multi	
. StrSch multi	. multi	. 40	. 40	5	. multi	
. StrSch multi	. multi		. 40	6	P66	#
. multi	. multi	. 40	. 40	7	P66	#
. multi	. multi	. 40	. 40	8	P66	#
. StrSch multi	. multi	. 40	. 40	9	P66	#
. StrSch multi		. 40		10	P66	#
		. 40	. 40	11		
. multi		. 40	. 40	12		
. multi		#	. 40	13	P66	#
. multi	PU62a #	. 40	. 40	14	P66	#
. multi	PU62a #	. 40	. 40	15	P66	#
. multi	PU62a #	. 40	. 40	16	P66	#
. multi	IB	. 40	#	17	P66	#
#	tr	. 40	. multi	18		
. multi	tr	. 40	. multi	19		
. multi	. 40	. 40	. multi TdoT	20	P66	#
. multi	. 40		. multi	21	P66	#
. multi	. 40	#	. multi	22	P66	#
. multi HERCULES	\$. 40		. multi	23	P66	#
. multi HERCULES	s. 40			24	P66	#
	. 40	#	. multi	25		
. multi HERCULES	<u> </u>	#	. multi	26		
. multi HERCULES	s. 40	IB	. multi	27	IB	
. multi	. 40	tr	. multi	28	IB	
. multi	#	. 40	. multi	29	IB	
. multi	. 40	. 40	. multi	30	tr	
. multi		. 40		31	tr	
26	5 18	21	26			4
Aug.	Sep.	Okt.	Nov.		Dez.	2020
2020	2020	2020	2020		2020	2020
tr	. multi	. multi	. multi	. 40)	1
tr		. multi	#		#	2
. 40	. multi	. multi	#	. 40)	3
. 40	. multi	. multi	#	. 40)	4

multi

#

IB

tr

tr

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

21

27

40

40

40

40

40

40

40

40

40

40

40

40

40

40

set-up / test run				
service week				
user run			school holiday HH	
machine develop	pment time			
Sunday / holiday	nday / holiday		school holiday SH	

4944h synchrotron radiation run No user run over Easter and Ascension Day

5 6 7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30 31

17

20

multi

P66a #

P66a #

P66a #

P66a #

IB

tr

tr

multi BetrFest

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

multi multi

multi multi

multi

AU-UHH

AU-UHH

AU-UHH

26

40 AU-UHH