Terascale ISTP 2010: Z' reconstruction with ROOT/C++

Ivor Fleck • Marcus Rammes

Universität Siegen

11.03.2010

Marcus Rammes Universität Siegen ISTP2010: Z' reconstruction

- Tutorial for this afternoon: Reconstruction of Z'
- Z': neutral, heavy particle (most generally) → here: Additional gauge boson (very similar to Z^0)
- Look for decay $Z' \rightarrow t\bar{t} \Rightarrow Mostly \ t\bar{t}$ background!
- Therefore: Z' reconstruction is basically $t\bar{t}$ reconstruction
- Choose semi-leptonic *t*t̄ decays ("Golden channel")

Detailed instructions (handout) in ./docs directory!

Z' reconstruction + exercises already prepared:

/afs/desy.de/group/school/tut_Zprime_2010/

- Important objects (jets, W bosons, etc.) organized in structs (Refer to handout for detailed description or see typedefs.cc)
- Event selection (cuts) already defined (bool isGoodEvent(Event))
- MC datasets (signal+background) from official ATLAS samples
- Changes to source code: First compile (make), then execute (./main)

Reconstruction of the hadronic top quark

Reconstruct hadronic W boson:

- Look for the two light flavor (LF) jets (p_T > 40 GeV) with invariant mass nearest to M_W
- Associated b jet:
 - Choose b jet (i.e. jet with tag weight> 6.0) closest to W boson (minimum ΔR)
 - Additional exercises: Fit Tschebyschoff polynomial to reconstruct W and top mass (exercise 3+4)

Reconstruction of the leptonic top quark

Reconstruct leptonic dataW boson:

 \blacktriangleright Recover neutrino kinematically using W mass constraint:

Take $\not \in_T$ as $p_T(\nu) \rightarrow \text{decrease } p_T(\nu)$ iteratively $\rightarrow p_z$ \Rightarrow two solutions (quadratic equation)

- ▶ p_x^{ν} , p_y^{ν} can be calculated from $\varphi(\not\!\!E_T)$ and $p_T(\nu)$
- Choose the solution so that leptonic top mass is closest to hadronic top mass!
- Associated b jet:

Just take the one remaining b jet!

(Event selection: exactly two jets with tag weight> 6.0 required)

Reconstruction of the Z'

- Invariant tt mass is Z' mass
 - \rightarrow should peak at $M_{Z'}!$
- Problem: Lot of $t\bar{t}$ background (BG)
- Choose ∆R cut between W and b to reduce BG (top quarks from Z' should be more boosted)
- Still too much BG, only calculate discovery potential and upper bound for cross section!
- Analyze "fake" Z' sample: Different particle with much higher cross section
 - \Rightarrow signal extraction possible
 - \rightarrow determine cross section and mass (exercise 10)

- Try to comprehend all exercises (source code and handout!)
- Play around with histogram binning, colors, legends, etc.
- But: We are very limited in time!
 - \rightarrow maybe you won't be able to finish