

Standard Model Electroweak Processes at LHC (and ILC)

Arno Straessner – TU Dresden

Introductory School to Particle Physics DESY Hamburg March 8-12, 2010

- Snapshot of the Electroweak Standard Model
- Electroweak Processes at LHC
- LHC Detectors
 - Calibration and Performance with Standard Model Physics
- Electroweak Measurements at the LHC
 - W Mass
 - Gauge Boson Couplings
 - Electroweak Mixing Angle
- Beyond LHC: ILC
- Summary

- Electroweak Standard Model:
 - developed by Glashow, Salam and Weinberg in the 1960s
 - unified gauge theory of QED and weak interactions \rightarrow gauge group SU(2)_LxU(1)_Y

• Higgs mechanism provides masses for fermions and bosons (lecture on Thursday)

Arno Straesser - Standard Model Electroweak Processes at LHC

- masses of gauge bosons: $\rm M_{\rm W},\,\rm M_{\rm Z}$
- masses of fermions: the most important is the mass of the top quark m_t

(lecture on Thursday)

- important prediction of the Standard Model: $\frac{M_W}{M_Z} = \cos \theta_w$ or $\rho = \frac{M_W}{M_Z \cos \theta_w} = 1$
- couplings of fermions to gauge bosons $-ig \frac{1}{2} (c_V \gamma^\mu - c_A \gamma^\mu \gamma^5)$
- couplings to Z- and W-bosons involve θ_{w} :

$$c_A^{f,Z} = T_3 = \pm \frac{1}{2}, 0 \qquad \qquad g_z = \frac{e}{\sin \theta_w \cos \theta_w} \qquad \qquad g_w = \sqrt{2} \frac{e}{\sin \theta_w}$$

• consequence: measurement of masses and couplings test Standard Model relations $\rightarrow M_7$, M_W , $sin^2\theta_w$ are precisely measured \rightarrow radiative corrections need to be included

Test of the Electroweak Standard Model

- bars show difference between measurement and theory
- relatively good agreement of measurements with predictions
- but room for new physics (SUSY, ...)

Physics at the LHC

• the proton-proton collider LHC and the 4 experiments:

- number of physics events:
 - $N = L \cdot \sigma$
- L = luminosity
- σ = cross-section
- LHC luminosities and centreof-mass energies
- 2009:
 - 900 GeV injection energy
 - 9 µb⁻¹
- 2010/2011
 - 7 TeV max. energy
 - up to 1 fb⁻¹
- later
 - 13-14 TeV ultimate energy
 - 50-70 fb⁻¹ until 2016
 - 3000 fb⁻¹ until 2030

• typical production cross-sections at Tevatron and LHC:

- inelastic pp scattering dominates
 → "minimum bias"
- QCD processes have large crosssections → 2-jet events, 3-jet events, ...
- many events with W and Z bosons
- top-pair production
- new particles: Higgs, SUSY, ..
- 13 orders of magnitude

troweak Processes at LHC

Properties of pp-Collision Events

• a 2-jet event at 900 GeV in ATLAS:

- hard scattering of partons inside proton:
- gluons and quarks carry momentum fractions x₁, x₂
- in the event picture: qq→qq, gg→gg, gq→gq
 QCD events are more frequent than EW events
- many hadrons produced from proton remnants: "underlying event"
- the typical LHC event has no hard scattering:
 "minimum bias" → pile-up
- strategy: identify the interesting physics with high-p_T leptons, photons and jets or missing transverse energy E_T^{miss}

Effect of Event Pile-Up

• number of simultaneous pp reactions increase with luminosity:

• at nominal LHC luminosity of 10³⁴ cm⁻²s⁻¹ about 25 events per bunch crossing

Electroweak Physics at the LHC

- W boson production:
 - cross-section measurement in W→ev, μv, τv channels (hadronic final states are difficult to select at LHC)
 - measurement of the W boson mass
 - background to search channels (W+jets)

• Z boson production:

- cross-section measurement in $Z \rightarrow ee, \mu\mu, \tau \tau$ channels
- calibration of the detector
- $sin^2\theta_w$ from forw.-backw. asymmetry in Z \rightarrow ee events

• measurement of systematic uncertainties for other processes, background to search channels (Z+jets)

Process	σ _{LO} @ 7 TeV [pb]	σ _{LO} @ 14 TeV [pb]	Evts (7 TeV) in 200 pb ⁻¹	Ratio 7 TeV/14 TeV
QCD pt>100 GeV	3.2 E+05	1.4 E+06	64 M	0.2
Z inclusive	2.4 E+04	5.7 E+04	5 M (3% Z→ℓℓ)	0.4
W inclusive	9.5 E+04	2.1 E+05	19 M (11% W→ℓv)	0.5
top pairs	8.4 E+01	4.7 E+02	17000	0.2
H (m=150 GeV)	4.0	16.0	800	0.3

Electroweak Physics at the LHC

- W boson production:
 - cross-section measurement in W→ev, µv, τv channels (hadronic final states are difficult to select at LHC)
 - measurement of the W boson mass
 - background to search channels (W+jets)

- Z boson production:
 - cross-section measurement in $Z \rightarrow ee, \mu\mu, \tau \tau$ channels
 - calibration of the detector
 - $sin^2\theta_w$ from forw.-backw. asymmetry in Z \rightarrow ee events

 measurement of systematic uncertainties for other processes, background to search channels (Z+jets)

Process	σ _{LO} @ 7 TeV [pb]	σ _{LO} @ 14 TeV [pb]	Evts (7 TeV) in 200 pb ⁻¹	Ratio 7 TeV/14 TeV
QCD pt>100 GeV	3.2 E+05	1.4 E+06	64 M	0.2
Z inclusive	2.4 E+04	5.7 E+04	5 M (3% Z→ℓℓ)	0.4
W inclusive	9.5 E+04	2.1 E+05	19 M (11% W→ℓv)	0.5
top pairs	8.4 E+01	4.7 E+02	17000	0.2
H (m=150 GeV)	4.0	16.0	800	0.3

• measurement of W-pairs, Z-pairs, WZ, Wy, and Zy final states

- determination of production cross-sections
- measurement of the couplings between gauge bosons \rightarrow prediction of the SM
 - triple-gauge boson vertex
- examples of cross-sections:

Diboson mode	Conditions	$\sqrt{s} = 14 \text{ TeV}$		
		$\sigma[pb]$		
W ⁺ W ⁻ [15]	W-boson width included	111.6		
$W^{\pm}Z$ [15]	Z and W on mass shell	47.8		factor 100-1000
ZZ [15]	Z's on mass shell	14.8	\prec	smaller than
$W^{\pm}\gamma$ [16]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	451		W, Z production
$Z\gamma$ [17]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	219	J	-

• measurement of W-pairs, Z-pairs, WZ, Wγ, and Zγ final states

- determination of production cross-sections
- measurement of the couplings between gauge bosons \rightarrow prediction of the SM
 - triple-gauge boson vertex
- examples of cross-sections:

Diboson mode	Conditions	$\sqrt{s} = 14 \text{ TeV}$	•	
		$\sigma[pb]$	_	
W ⁺ W ⁻ [15]	W-boson width included	111.6		
$W^{\pm}Z$ [15]	Z and W on mass shell	47.8		factor 100-1000
ZZ [15]	Z's on mass shell	14.8	\prec	smaller than
W [±] γ[16]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	451		W, Z production
$Z\gamma$ [17]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	219	J	

ATLAS and CMS Detectors

• challenges for LHC detectors:

- high collision rate: 25 ns proton bunch-crossing
- up to 25 minimum-bias events/crossing \rightarrow pile-up
- radiation hardness \rightarrow detectors and electronics tolerate10^{15} particles/cm^2
- high granularity \rightarrow isolate interesting leptons/photons/jets from pile-up
- very good angular coverage \rightarrow measure missing energy (neutrinos, SUSY)
- fast trigger with high background suppression rate (~1 accepted event/10⁶)

• performance goals:

- get high efficiency for particle detection
- suppress background from QCD jets

Object	Efficiency	BG	Motivation K. Desch
		suppr.	
electrons	>70%	100000	Z,W,top,H→4ℓ,
photons	80%	1000	Н→үү
muons	>97% for p _T $>1GeV$		H→4ℓ,, Z, W
tau leptons	50%	100	H/A→ττ, SUSY,…
b-jets	50%	100	top, H→bb,SUSY,…

The ATLAS Detector

Components of the ATLAS Detectors

muon spectrometer: 1000 chambers with monitored drift tubes 500 trigger RPC chambers

Arno Straesser - Star

The CMS Detector

dimensions: 22m x 15m x 15m weight: 12500 t

Detector Components of CMS

Particle Identification

- energy and shower shape measured in calorimeter
- track matched to energy cluster using angles

- compare calorimetric energy and momentum measurement in tracker: E/p ≈ 1
- no leakage of energy into hadronic calorimeter
- combined performance is important

- e.g. electron:
 - energy and shower shape measured in calorimeter
 - track matched to energy cluster using angles

- compare calorimetric energy and momentum measurement in tracker: E/p ≈ 1
- no leakage of energy into hadronic calorimeter
- combined performance is important

2009 data

Performance Comparison

	TA	LAS	CMS	
B-Field	2 T (solenoid)	4 T (toroid)	3.8 T (solenoid)	
Tracking	Si (strips+pixel) + Gas (TRT)	σ(p _T)/p _T at 100 GeV: 3.8 %	Si (strips+pixel)	σ(p _T)/p _T at 100 GeV: 1.5 %
ECAL	Pb - LAr (high granularity)	σ(E)/E = 9%/√E + 0.7%	PbWO ₄ crystals (high E resolution)	σ(E)/E = 3%/√E + 0.25%
HCAL	Fe – scintillator (10 λ)	σ(E)/E (ECAL+HCAL)= 70%/√E + 3.3%	Brass – scintillator (7 λ)	σ(E)/E (ECAL+HCAL)= 70%/√E + 8%
Muon Spectrometer	ion. chambers, air-core magnet	σ(p _T)/p _T at 1TeV: 7 %	ion. chambers, instrumented iron	σ(p _T)/p _T at 1TeV: 5 %

• D. Froidevaux, P. Sphicas, General-purpose Detectors for the Large Hadron Collider, Annu. Rev. Nucl. Part. Sci. 2006. 56:375–440

PC

farms

	Bunch crossing	40 MHz
•	σ total	70 mb
	Event rate	~1 GHz
•	Number of events/BC	~25
	Number of particles/event	~1500
•	Event size	~1.5 MB

- Mass storage rate ~200 Hz
- Need to have trigger of high performance – 6 orders of rate reduction
 - complex events and 140 M channels
- Level-1: hardware based at 40 MHz
- Level-2: software based at 100 kHz
- Level-3: event filter at 3 kHz
- Storage at 200 Hz

- muon trigger detectors: RPC = resistive plate chamber
- pre-defined track segements $\rightarrow p_T$

- calorimeter: "trigger-tower"
- energy sums in pre-defined (η,φ) regions

muon trigger receiver

calo trigger receiver

- early event rejection in each stage
- L1 muon trigger: low/high p_T signatures
- L1 calo trigger: energy sums in calorimeter towers
- L1 Region-of-Interest \rightarrow L2
- high level trigger (software):
 - L2:
 - local reconstruction within Rol
 - tracking information available
 - event filter (EF):
 - access to fully reconstructed event
 - CMS trigger is conceptually similar

High Level Trigger

• trigger hardware:

read-out buffer PCs

Detector Performance with Z Bosons

n

- commonly applied method to measure performance in data: → tag & probe
- example: measure muon identification efficiency in Z→µµ events
 - identify triggered and well measured muon: → tag
 - use Z decay kinematics to find the 2nd reconstructed muon: → probe
 - check if 2nd muon passed selection
 → muon identification efficiency
 - similar for muon trigger and muon reconstruction efficiency
- many more examples:
 - $Z \rightarrow ee, J/psi \rightarrow ee, ...$

Efficiency

Detector Performance with Z Bosons

- identification of hadronic tau leptons
 - narrow hadronic jet
 - 1 or 3 particle tracks
- tau may look like hadronic jets from quarks and gluons

 Z+jet → ll+jet events help to estimate how often a jet is misidentified as a tau

τ^- decay mode	BR %			
$e^- \bar{\nu}_e \bar{\nu}_{\tau}$	17.85	leptonic		
$\mu^- ar{ u}_\mu ar{ u}_ au$	17.36			
$\pi^- ar v_ au$	10.91	hadronic	ר	
$\pi^-\pi^0ar{ u}_ au$	25.52	1-prong		720/
$\pi^- 2 \pi^0 ar{ extbf{v}}_{ au}$	9.27			12%
$\pi^{-}3\pi^{0}\bar{v}_{\tau}$	1.04		L	_
$K^- \bar{v}_{\tau}$ + Neutrals	1.57		Γ	-
$\pi^-\pi^+\pi^-ar{v}_ au$	9.32	hadronic		
$\pi^-\pi^+\pi^-\pi^0ar{ u}_ au$	4.6 1	3-prong		220/
$K^-\pi^+\pi^-\bar{v}_{\tau}$ + Neutrals	0.48			23/0

Arno Straesser - Standard Model Electroweak Processes at LHC

F.Friedrich

Detector Calibration with Z Bosons

- reconstruct pairs of electrons and positrons in the detector
- measure the invariant mass of electron and positron $\rm M_{ee}$
- the mass spectrum should peak at the Z boson mass M_Z
- line-shape modelled with Breit-Wigner distribution:

$${\rm BW}(M) \sim \frac{M^2}{(M^2-M_Z^2)^2 + \Gamma_Z^2 M^4/M_Z^2}$$

- use the Z mass constraint from LEP M_Z=91.1875 GeV to calibrate the energy scale of the calorimeter
- e.g. constant term of the energy resolution: 140k Z→ee events needed to reach 0.2%

Detector Performance with First Physics Data

• calorimeter performance with $\pi^0 \rightarrow \gamma \gamma$

peak value agrees with pion mass to 1% (1.5 MeV)

resolution is 19 MeV ~ 2%

 $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ with s = centre-of-mass energy squared

- it is easy to calculate that the mass of the object produced (e.g. a W) is given by $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ with s = centre-of-mass energy squared
- the production cross section can then be written as

 $\sigma_{ij}(\hat{s})$

- it is easy to calculate that the mass of the object produced (e.g. a W) is given by $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ with s = centre-of-mass energy squared
- the production cross section can then be written as

$$\sigma_{ij}(\hat{s}) \qquad \qquad \delta(\hat{s} - x_1 x_2 s)$$

- it is easy to calculate that the mass of the object produced (e.g. a W) is given by $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ with s = centre-of-mass energy squared
- the production cross section can then be written as

$$\sigma_{ij}(\hat{s}) \int_0^1 \int_0^1 f_i(x_1) f_j(x_2) \delta(\hat{s} - x_1 x_2 s) \, dx_1 \, dx_2$$

- it is easy to calculate that the mass of the object produced (e.g. a W) is given by $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ with s = centre-of-mass energy squared
- the production cross section can then be written as

$$\sigma = \sum_{i,j} \int \sigma_{ij}(\hat{s}) \int_0^1 \int_0^1 f_i(x_1) f_j(x_2) \delta(\hat{s} - x_1 x_2 s) \, dx_1 \, dx_2 d\hat{s}$$

At hadron machines the scattering direction is usually given in terms of pseudo-rapidity

• in a simplified picture x₁, x₂ are related to the pseudorapidity of the boson with mass M:

$$x_1 \approx \frac{M}{\sqrt{s}} e^{+\eta} \quad x_2 \approx \frac{M}{\sqrt{s}} e^{-\eta}$$

for M=80.4 GeV and \sqrt{s} =7 TeV • examples: $\eta = 0$ then $x_1 = x_2 \approx 0.01$ $\eta = 0.88$ then $x_1 \approx 0.03$ and $x_2 \approx 0.005$ $\eta = 3.0$ then $x_1 \approx 0.23$ and $x_2 \approx 0.0006$

 at different scattering directions, different regions of the parton distribution functions are probed

• If you assume that the W boson resonance has zero width ($\Gamma_W \approx 0$)

$$\hat{\sigma}_{ij}(\hat{s}) = \sigma_{ij}\delta(\hat{s} - M^2)M^2$$
 $\sigma_{ij} = \sigma(ij \rightarrow W)$

one can perform the integrals easily and one obtains:

 consequence: you can calculate the diff. cross-section by simply multiplying the pdf's (and by summing over the possible intermediate states ij)

plots and numerical tables: http://durpdg.dur.ac.uk/HEPDATA/PDF

try it yourself! (works also for Higgs at LO, ...)

 $\frac{d\sigma}{d\eta}(pp \to X) \approx \sum_{i,j} \sigma_{ij} \frac{M^2}{s} f_i(\frac{M}{\sqrt{s}} e^{+\eta}) f_j(\frac{M}{\sqrt{s}} e^{-\eta})$

• example:

$$u + \bar{d} \to W^+$$

$$\bar{u} + d \to W^- \qquad \sigma(u + \bar{d} \to W^+) = \sigma(\bar{u} + d \to W^-) \equiv \sigma_W$$

- anti-u and anti-d pdf's are about the same (sea-quarks)
- at $\eta = 3.0 \ (x_1 \approx 0.23, x_2 \approx 0.0006)$
 - \rightarrow the u- and d-pdf differ by a factor of 2 (valence quarks)
 - \rightarrow W⁺ production is enhanced with respect to W⁻

possibility to test/measure pdf's

M. Dittmar et al., Phys. Rev. D 56 (1997) 7284

W+jet Production

- there are correction to the lowest order description, e.g. due to gluon radiation
- corrections are next-to-leading order (NLO) in α_s or even NNLO, N³LO, ... \rightarrow W+jet production

• theoretical uncertainties are typically reduced when going to higher order calculations

• W selection:

- lepton p_T>25 GeV
- E_T^{miss} >25 GeV \rightarrow neutrino
- W mass would be

$$M_W \approx \sqrt{E^{\ell} E^{\nu} (1 - \cos \alpha(\ell, \nu))}$$

but E^v and angle can not be measured \rightarrow transverse mass: $M_T > 40 \text{ GeV}$

$$M_T = \sqrt{p_T^\ell p_T^{miss} (1 - \cos \Delta \phi(p_T^\ell, p_T^{miss}))}$$

- Z selection:
 - lepton p_T>15 GeV
 - 80<M_{ll}<100 GeV
 - isolated electrons and muons
- background at 10% level (QCD)
- stat. uncertainty ~ $1/\sqrt{N}$ will be very small
- systematics will dominate: background uncertainties, luminosity and theory (PDF, gluon radiation, underlying event,...)

• kinematics of the W $\rightarrow \ell v_{\ell}$ decay \rightarrow only the lepton is measured in the detector:

- fit spectra of lepton p_T and $M_T = \sqrt{p_T^\ell p_T^{miss}(1 \cos \Delta \phi(p_T^\ell, p_T^{miss}))}$
- lepton energy scale from Z events
- adjust Monte Carlo samples with different M_W to fit best to data spectrum
- most sensitive region is upper edge of the Jacobian peak (~40 GeV)

- statistical uncertainty in ~30 pb⁻¹ is ~ 60 MeV in W \rightarrow µv and W \rightarrow ev channel
- systematics: lepton energy scale 110 MeV and 200 MeV due to W recoil, $p_{T}{}^{W}$
- "warm-up" for the ultimate 15 MeV precision \rightarrow 10-20 fb⁻¹
- W mass precision today: 23 MeV (LEP+Tevatron)

Couplings between Gauge Bosons

γ/Z

W+

- non-abelian nature of SM predicts
 → triple gauge boson couplings (TGC)
- coupling strength in the SM:

 $g_{WW\gamma} = e \qquad g_{WWZ} = e \cot \theta_w$

- measure these couplings and test for anomalous contributions
- effective Lagrangian is used to model these ($V = \gamma$ or Z):

$$L/g_{WWV} = i g_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i \kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

- in the SM: $g_1^{\gamma} = g_1^{Z} = 1$ $\kappa^{\gamma} = \kappa^{Z} = 1$ $\lambda^{\gamma} = \lambda^{Z} = 0$
- at LHC the di-boson decays to electrons and muons will be measured: $\begin{array}{c} pp \rightarrow ZW \rightarrow \ell \ell \ \ell v \\ pp \rightarrow WW \rightarrow \ell v \ \ell v \\ pp \rightarrow ZZ \rightarrow \ell \ell \ \ell \ell, \ \ell \ell \ v v \\ pp \rightarrow Z\gamma \rightarrow \ell \ell \ \gamma \\ pp \rightarrow W\gamma \rightarrow \ell v \ \gamma \end{array}$ high p_T leptons and photons Z mass and transverse mass constraints
- anomalous couplings between ZZZ and ZZ γ are studied, too \rightarrow do not exist in SM

• high energy reach of LHC will help to improve the coupling measurements:

• compare to LEP: $\delta \sin^2 \theta_w = 1.6 \cdot 10^{-4}$

0.8 1 **COS(**θ*)

Summary of LHC Electroweak Measurements

- production cross-sections of W and Z boson
- W mass with 15 MeV ultimate precision
- di-boson production WW, WZ, ZZ, ...
- triple gauge boson couplings to precision beyond $\Delta\kappa/\Delta\lambda/\Delta g_1{=}0.01$
- perform a new measurement of the weak mixing angle
- $\delta sin^2 \theta_w = 3 \cdot 10^{-4}$ and maybe better
- need a very good understanding of the ATLAS and CMS detectors
 - known electro-weak processes are a main reference
- need a well-performing LHC machine to deliver good data
- we know that the Standard Model is just an effective theory which will need extensions at very high energies
 - keep your eyes open when looking at invariant mass spectra, etc.

International Linear Collider

e+e- machine 500 GeV centre-of-mass energy luminosity 2x10³⁴ cm⁻² s⁻¹ polarization e- 80% e+ 30% (60%) L=500 fb⁻¹ in 4 years

- detectors better than at LEP: jet measurement, e.m. calorimetry, tracking
- mainly for
 - studying SUSY physics
 - measuring Higgs boson properties
- and...
 - very precise top mass determination \rightarrow top-pair threshold scan $\Delta m_t \approx 100 \text{ MeV}$
 - further improved TGC measurements
 - more precise measurement of $sin^2\theta_w \rightarrow GigaZ$ option at Z peak energies

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.9%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.8%
Tile calorimeter	9800	99.2%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	98.5%
TGC Endcap Muon Trigger	320 k	99.4%
LVL1 Calo trigger	7160	99.8%

Presented by J. Kanzaki at KEK in Feb. 19, 2010

$$-ig\frac{1}{2}(c_V\gamma^\mu - c_A\gamma^\mu\gamma^5)$$

• coupling to Z-bosons involves θ_w :

$$\begin{array}{c|c|c|c|c|c|c|}\hline \gamma & W & Z \\ \hline g & e & \sqrt{2} \frac{e}{\sin \theta_w} & g_z = \frac{e}{\sin \theta_w \cos \theta_w} \end{array}$$

LO cross sections in pb, inclusive

E _{cm} [TeV]/ Process	7	10	14	Evts (7 TeV) in 200/pb	Ratio 7/14
QCD pt>100 GeV	3.2E+05	6.8E+05	1.4E+06	6.4E+07	0.2
Z incl	2.5E+04	3.6E+04	5.7E+04	5.0E+06	0.4
W incl	9.5E+04	1.4E+05	2.1E+05	1.9E+07	0.5
ttbar	8.4E+01	2.2E+02	4.8E+02	1.7E+04	0.2
H(150 GeV)	4.0	8.2	16.0	8.0E+02	0.3
	no bran	ching rat	ios inclu		G Dissertori

combined performance is important

	Tracker	ECAL	HCAL	Muon- System	Vertex- Detector
Electrons	++	+++	+	-	-
Photons	+	+++	+	-	-
Muons	+(+)	+	+	+++	(+)
Taus	++	++	++	++	++
B-Jets	++	+	+	+	+++
Jets	+	+++	+++	(+)	-
Missing E_{T}	+	+++	+++	+	-

K. Desch