

Z Physics Tutorial

Felix Friedrich, Arno Straessner – TU Dresden Jana Kraus, Eckhard v. Törne – Universität Bonn

Introductory School to Particle Physics DESY Hamburg March 8-12, 2010

- In the tutorial of today you will learn:
- Part I:
 - how to use the ATLAS event display
 - we will look first at Z bosons produced in simulated pp collisions which decay to a pair of electrons

 $pp \rightarrow Z + X \rightarrow e^+e^- + X$

- how to extract information from the display to calculate kinematic variables
- you will compare measurements of the mass of Z boson, with different detectors, the calorimeter and the tracking detector
- use ROOT for the calculation
- Part II:
 - determine the Z boson mass in an uncalibrated data set
 - your task is to improve the calibration of the electron energy
 - you learn how to use ROOT for histograms and fitting
- tomorrow: Part III:
 - measurement of the W mass from lepton p_T spectrum

ATLANTIS

-	International Advancement	0
ZMR	Rubberband	Pick SC
	-	
Cuts	ID Calo Muor	ns Det
	Proj	Data
Data	All Off	All On
	Name	Value
	Order	STrRTrHits -
	Ass Hits To	IPatrec 👻
	RTr Order	xKal iPat IDS 💌
	S3D Order	S3D TrigS3D 👻
	12 S3D	
	Trig\$30	
	□ ssc	
	I TRT	
	⊡ STr	
	□ xKal	
	1 iPat	
	DiDScan	
	I SNP	
	12 RVx	
	IT SVx	
	ROI	
	🗆 jet	
	F LAT	
	TILE	
	HEC	
DQL .	: 15 : 21	
Con La		

• you may set a higher cut on the track pT (it is now at 1 GeV)

- Z mass event #3
 - calorimeter
 - tracker

m_{ee}= 119.991 GeV m_{ee}= 83.7935 GeV

- Z mass event #7
 - calorimeter
 - tracker

m_{ee}= 86.0215 GeV m_{ee}= 68.5353 GeV

- Z mass event #9
 - calorimeter
 - tracker

m_{ee}= 87.4466 GeV m_{ee}= 34.5958 GeV

track momentum calibration slightly too low (see calorimeter calibration later)

- for njet==0 \rightarrow pT spectrum peaks at MZ/2 \sim 45 GeV
- for njet>0 \rightarrow pT spectrum peaks at lower masses
- reason:
 - additional jets balance their pT against Z momentum
 - Z has pT $!= 0 \rightarrow$ ideal "Jacobian peak" approximation is not valid

Figure 5.2: Feynman diagrams for the production of Z boson together with 0,1,2,3 jets (from [25, p.120])

Arno Straesser - Standard Model Physics at LHC and ILC

#include "math.h"

```
double ElecCalib(double e_raw, double pt, double eta, double phi,
           double etiso, double eoverp, double drjet)
// useable variables
   e_raw = raw energy
11
     pt = transverse momentum
11
    eta = pseudorapidity
11
    phi = azimuthal angle
11
   etiso = transverse energy
11
// eoverp = E/p
  drjet = minimal delta R of jets
11
double energy = e_raw;
double mZ = 91.2;
( fabs(eta) < 1.5 ) energy = e_raw * mZ/mObserved;</pre>
// if
// else if \langle fabs(eta) \rangle 2.0 \rangle energy = e_raw * mZ/mObserved;
return energy;
```

ElecCalib.C lines 1-28/28 (END)

File Edit Options Buffers Tools C++ Help

minclude "math.h"

return energy;

{

Solutions of part II

#include "math.h"

```
double ElecCalib(double e raw, double pt, double eta, double phi,
               double etiso, double eoverp, double drjet)
// useable variables
// e raw = raw energy
// pt = transverse momentum
// eta = pseudorapidity
// phi = azimuthal angle
// etiso = transverse energy
// eoverp = E/p
// drjet = minimal delta R of jets
double energy = e raw;
double mZ = 91.2:
// ======= energy calibration ======
if (fabs(eta) < 0.5) energy = e raw * mZ/89.26 * mZ/92.40 * mZ/92.07 * mZ/91.67 * mZ/91.47;
else if (fabs(eta) < 1.0) energy = e raw * mZ/88.13 * mZ/91.68 * mZ/91.63 * mZ/91.32 * mZ/91.37;
else if (fabs(eta) < 1.5) energy = e raw * mZ/86.45 * mZ/90.29 * mZ/90.97 * mZ/91.09 * mZ/91.15;
else if (fabs(eta) < 2.0) energy = e raw * mZ/83.95 * mZ/88.12 * mZ/89.86 * mZ/90.57 * mZ/90.89;
else if (fabs(eta) < 2.5) energy = e raw * mZ/80.39 * mZ/86.49 * mZ/89.40 * mZ/90.50 * mZ/90.86;
      ( fabs(eta) < 1.5 ) energy = e raw * mZ/mObserved;</pre>
// if
// else if ( fabs(eta) > 2.0 ) energy = e raw * mZ/mObserved;
```

return energy;

}

Arno Straesser - Standard Model Physics at LHC and ILC