Quantum Chromodynamics

... at the LHC and elsewhere ...

Introductory School to Terascale Physics DESY Hamburg, 10 March 2010

OUTLINE

> Basics of Quantum Chromodynamics (QCD)

- Particles, interactions, Feynman diagrams
- A bit of history, and some salient features
- Parton Distribution Functions (veeeery briefly)
 - Factorisation, and QCD processes at the LHC (hadron colliders)
- Particle production
 - Spectra, multiplicities, identified particles, etc.
- > Jets as probes of hard interactions
 - Jet algorithms
 - Measurements in ee, at HERA, Tevatron and LHC
 - Extractions of α_S
- The Underlying Event
 - ... just one slide

THE PATH TO QCD – HISTORY (1)

- Early classifications of particles (`particle zoo')
 - Based on charge, spin, isospin (Heisenberg et al.: SU(2)-based theories, grouping for example proton and neutron together ...)
 - Invention' of `quarks' as building blocks of hadrons by Gell-Man, Zweig: up, down (strange), ...
- > Parallel: scattering experiments on nuclear/proton substructure:
 - Evidence for proton substructure: Partons (Bjorken / Feynman).

Invention of the `Quark-Parton Model'

Proton consists of pointlike partons/quarks which carry fractional electric charge and a fraction x of the proton's momentum!

> Problems!!!!

- The Δ^{++} : spin-3/2 particle built from 3 identical up quarks with parallel spins????
- Scaling violations in deep-inelastic scattering experiments!!!
- How do electrically charged particles hold together in the proton????
- Where is the rest of the proton momentum if not in the quarks????

THE PATH TO QCD – HISTORY (2)

Solutions: QCD

- A gauge theory along the lines of what was established for electro-weak interactions!
- Introduction of a new degree of freedom: colour!
- > Experimental evidence: Discovery of gluons (here at PETRA / DESY!)
 - $e^+e^- \rightarrow qqg$ events at the PETRA collider 1979!

BASICS OF QCD

> Quantum Chromodynamics (QCD) – the theory of strong interactions

- Non-abelian gauge field theory based on an SU(3)_C symmetry.
- QCD describes interactions between coloured particles: quarks and gluons.
- Developed in the 1970es by Fritzsch, Gell-Mann, Leutwyler, Gross, Weinberg, etc. (see a bit on history later).

- We have three colour charges (`red', `blue', `green') and coloured gauge bosons
 - This leads to 8(+1) gauge bosons (gluons) in contrast to QED (1 neutral photon)
 - ... and also to other remarkable features (next slides).

SALIENT FEATURES OF QCD (1)

- > Asymptotic Freedom (NP2004 Gross, Wilzcek, Politzer)
 - Relevant parameter: Coupling strength between coloured particles: α_s!

 $\alpha_{s}(\mu) = \frac{\alpha_{s}(M_{z})}{1 + \alpha_{s}(M_{z}) \cdot b \cdot \ln(\mu^{2}/M_{z}^{2})}$

- At large energies / small distances, quarks are `free' inside the proton / hadron.
- > Confinement:
 - At large distances / small energies, the coupling increases and diverges.
 - There are no free quarks!
 - Solution of confinement is one of the Millenium Prize problems (Clay Mathematics Institute).

SALIENT FEATURES OF QCD (2)

How to tackle QCD?

 Perturbative QCD: At high energies, the coupling is small and cross sections can be evaluated as power series in α_s:

$$\sigma = C_0 + \alpha_s \cdot C_1 + \alpha_s^2 \cdot C_2 \dots = \sum_{n=0}^{\infty} \alpha_s^n \cdot C_n$$

The coefficients can typically be evaluated to some (small) order: LO, NLO, NNLO In addition methods to sum up other large contributing terms (large logs).

- Lattice QCD: can give particle spectra, indications for the value of the coupling, ...
- Effective theories
- 1/N expansions

· · · ·

SALIENT FEATURES OF QCD (2)

> Hadron spectroscopy in lattice QCD

PARTON DISTRIBUTION FUNCTIONS

- We are talking about proton-proton collisions ...
 - ... so we better know what the proton is (in terms of colliding constituents / partons / quarks+gluons).
 - Description in terms of parton distribution functions (PDFs): probability to find a quark / gluon of type a with momentum fraction x in the proton when probed at a scale Q!

 $f_{a/p}(x,Q) \quad a = u,\overline{u},d,\ldots,g$

- > Why does f_{a/p} depend on Q (dependence on x should be clear)?
 - Virtual processes in the hadron: See more of the inner life when increasing the resolution (the scale / the energy, decreasing the distance, get closer) → change of probabilities to find quarks with certain properties (next slide).
- > ... the bad thing about PDFs:
 - They cannot be calculated from first principles ...
 - ... but have to be determined using experimental data and involved mathematical tools (DGLAP evolution, not covered here).

More in I.

tomorrow!

Brock's lecture

PARTON DISTRIBUTION FUNCTIONS or

> Why does f_{a/p} depend on Q?

 Virtual processes in the hadron: See more of the inner life when increasing the resolution (the scale / the energy, decreasing the distance, get closer) → change of probabilities to find quarks with certain properties.

More in I.

Brock's lecture tomorrow!

PARTON DISTRIBUTION FUNCTIONS or

- Extractions rely mainly on deep-inelastic scattering data (HERA)
 - Structure function F₂: Related to ep cross section σ_{ep} and parton densities f_i!

More in I.

Brock's lecture

PARTON DISTRIBUTION FUNCTIONS

More in I. Brock's lecture!

Current state-of-the art: PDF efforts from different groups like CTEQ, MSTW, HERA, etc. (and hopes to improve with LHC data):

H1 and ZEUS Combined PDF Fit $a = u, \overline{u}, d, \dots, g$ $f_{a/p}(x,Q)$ April 2008 T $O^2 = 10 \text{ GeV}^2$ HERA-I PDF (prel.) 0.8 exp. uncert. Use existing libraries to model uncert. xu., HERA Structure Functions Working Group access given PDF sets for 0.6 usage in your analysis LHAPDF 0.4 xg (× 0.05) xd, OOPDF ... 0.2 xS (× 0.05) Interfaced to experimentspecific software!

 10^{-4}

T. Schörner-Sadenius | QCD @ LHC | Introductory School to Terascale Physics | 10 March 2010 | page 12

10-2

10-1

1

Х

10-3

PARTON DISTRIBUTION FUNCTIONS

More in I. Brock's lecture!

T. Schörner-Sadenius | QCD @ LHC | Introductory School to Terascale Physics | 10 March 2010 | page 13

PDFs AND FACTORISATION

How to get from the PDFs to the physics? Convolution of PDFs with matrix elements describing the underlying scattering process.

- So the problem reduces to having the PDFs and calculating, using pQCD, the matrix elements or coefficients C_n.
 - → Although that statement is a bit over-simplifying ... see next slides!

PDFs AND FACTORISATION

- Processes to be considered in QCD events in hadron-hadron collisions!
 - ... just a few examples ...
- Important: different final states and different physics questions.
 - Particle production from "showering" and "fragmentation" of outgoing quarks and gluons.
 - Jets as "fingerprints" of outgoing quarks and gluons.
 - Cross-sections / rates of these processes → background for searches and new physics (QCD as "bread-and-butter physics")

PDFs AND FACTORISATION

> ... there's more to events in hadron-hadron collisions!

PARTICLE PRODUCTION: HISTORY

- In the 1960es, 70es observables describing events were measured in hadron collisions – for example total transverse energy (here UA2 at SppS).
 - Low E_T: exponential fall-off, higher E_T: power law: E_T⁻ⁿ.
 - Indication for hard proton constituents!
 - Furthermore: "jet-like" structures observed: indication of hard 2→2 scattering, with final-state clustered around initial partons.

PARTICLE PRODUCTION: HISTORY

- > Question: Are particles produced spherically symmetrically (in transverse plane) or is there a structure?
 - Studied in hadron-hadron / ee collisions.
 - Example: Sphericity S (Mark-I at SPEAR):

$$S = \frac{3\left(\sum_i p_{T,i}^2\right)}{2\left(\sum_i \vec{p}_i^2\right)},$$

Evidence for jet-like structure
→ fragmentation / showering models.

- In the processes of parton showering and fragmentation of the finalstate quarks, numerous stable particles (pions, protons, ...) are produced.
 - Measure the number of charged particles as functions of transverse momentum p_T and pseudorapidity η and test models.
 - Measure energy dependence of average transverse momentum and average charged particle multiplicity.
 - Measure individual particles, for example K, Λ , J/ Ψ , and ratios of these.
 - Measure ...
- Note that it is especially interesting to measure the same distributions at different centre-of-mass energies and at different machines in order to
 - Be able to compare / verify different measurements and
 - To learn about the behaviour of distributions and average values with energy.
 - To adjust ("tune") the models we have.
 - → Compare experimental results from ISR, SppS, LHC, RHIC, Tevatron

> ... energy dependence of charged hadron multiplicity:

> ... recent results from CMS, and some comparisons.

CMS result fits in nicely with skimple parametrisation of behaviour with CMS energy!

> ... recent results from CMS, and some comparisons.

> ... recent results from LHC, and some comparisons.

> ... recent results from LHC, and some comparisons.

T. Schörner-Sadenius | QCD @ LHC | Introductory School to Terascale Physics | 10 March 2010 | page 25

> ... Mean energy fraction of particles in jets as function of opening angle!

Nice agreement between results from different machines !

… there's more to events in hadron-hadron collisions …

… than "just" produced particles!

- Already mentioned: "Jets" structures underlying the distribution of the produced particles (example from UA2)
 - Two back-to-back "jets" (word inherited from cosmic-ray experiments)???
 - Polar-angular distribution of jets following

 $1 + \alpha \cos^2 \theta$

→2→2 scattering with spin-1/2 particles?

In parallel: jet structures in e+e- collisions at different experiments; identification as

$$e^+e^- \rightarrow q\overline{q}$$

Historically not a trivial story to identify the partons in the proton with the results of ee!

> ... at different experiments:

> ... at different experiments:

JET PHYSICS: BASICS

- > Jets: two-fold purpose in high-energy physics
 - Tool for studying (hard QCD) interactions
 - Object of study in itself: Fragmentation etc.
- Jets although clearly visible to the naked, untrained eye are neither a simple nor a well-defined concept!
 - A jet algorithm is a mathematical prescription for clustering the objects of the final state (if possible both in the experiment and for theoretical predictions and models).
 - Different classes of algorithms, different fields of applications (hadron colliders, lepton colliders, HERA, …), different physics questions → jet physics is a science in itself!
 - Jet algorithms shall fulfill a number of requirements (without completeness): theoretically safe, easy to handle, small hadronisation corrections, unbiased, ...
- Currently two classes of algorithms used: cluster algorithms and conebased algorithms
 - Historically, the Tevatron experiments tended to cone-based algorithms, e+e- and HERA to clustering algorithms;
 - At LHC, both collaborations study a multitude of different algorithms.

JET PHYSICS: ALGORITHMS

- Cone algorithms: Aim at minimising the relative transverse momentum in cones of fixed sizes (directions of largest energy flow in the event).
- Clustering algorithms: "Resumming" the parton showering / fragmentation process, using some distance criteron:

JET PHYSICS: ALGORITHMS

- Cone algorithms: Aim at minimising the relative transverse momentum in cones of fixed sizes (directions of largest energy flow in the event).
- Clustering algorithms: "Resumming" the parton showering / fragmentation process, using some distance criteron:

JET PHYSICS: ALGORITHMS

- Cone algorithms: Aim at minimising the relative transverse momentum in cones of fixed sizes (directions of largest energy flow in the event).
- Clustering algorithms: "Resumming" the parton showering / fragmentation process, using some distance criteron:

All particles clustered to a number of jets !!!

JET PHYSICS: RESULTS FROM LEP

> In ee \rightarrow qq(q,q) or in $\gamma\gamma$ collisions:

JET PHYSICS: RESULTS FROM HERA (1)

> In photoproduction, in deep-inelastic scattering, in diffraction

JET PHYSICS: RESULTS FROM HERA (2)

Comparison of 1,2,3 jet production!

JET PHYSICS: RESULTS FROM TEVATRON

Measuring jets up to energies of 600 GeV!!!!

Nice description by NLO QCD calculations! In contrast to HERA, often experimentally limited.

JET PHYSICS: RESULTS OVERVIEW

- Jet physics is a well-established and well-understood field.
- Excellent basis for QCD studies at the LHC.
 - Some difficult phase space regions.
- Note that jets are of more importance than "only" for QCD studies.

JET PHYSICS: LHC

- > Will have jets up to several TeV!
 - Factor 10 higher energies than at the Tevatron!
 - Massive reach for QCD studies and …

> ... at different experiments:

JET PHYSICS: LHC

- > Jets play crucial role in many new physics scenarios
 - Often QCD rates for similar signatures higher!
 - Need to understand QCD!!!

/de//de/

10

 10^{-2}

10-3

10

||| < 1

QCD

T. Schörner-Sadenius | QCD @ LHC | Introductory School to Terascale Physics | 10 March 2010 | page 41

JETS AND THE STRONG COUPLING

> One example: HERA jet data

 $\frac{d\sigma(\alpha_s(M_Z))}{dA}\bigg|_{NLO} = C_1\alpha_s(M_Z) + C_2\alpha_s^2(M_Z)$

T. Schörner-Sadenius | QCD @ LHC | Introductory School to Terascale Physics | 10 March 2010 | page 42

THE STRONG COUPLING: e+e- EXAMPLES

THE STRONG COUPLING: e+e- EXAMPLES

> Extracted values of the strong coupling:

THE STRONG COUPLING: SUMMARY

FEW SLIDES: THE UNDERLYING EVENT

- Possibility of multi-parton interactions (and also pile-up)
 - Potentially large impact on analyses!
 - Study using for example energy flow in different regions.

FEW SLIDES: THE UNDERLYING EVENT

- > Studies at the Tevatron (and also at HERA)!
 - Models can describe data …
 - ... but fail in interpolation to LHC energies!

FEW SLIDES: THE UNDERLYING EVENT

> Impact on top mass reconstruction!

SUMMARY

- QCD was a major topic at all previous and running hgh-energy colliders – and continues to be important at the LHC
 - Signal
 - Background
- > QCD has many different aspects:
 - Particle production
 - Jet physics
 - Determination of QCD parameters like strong coupling α_s.
- > Jet physics is a very interesting topic
 - QCD at highest scales
 - Discovery potential for new physics
 - Question of algorithms, calibration, uncertainties,
- > Many other aspects of QCD (at the LHC) not covered here ...
- Now enjoy the QCD/jets tutorial!