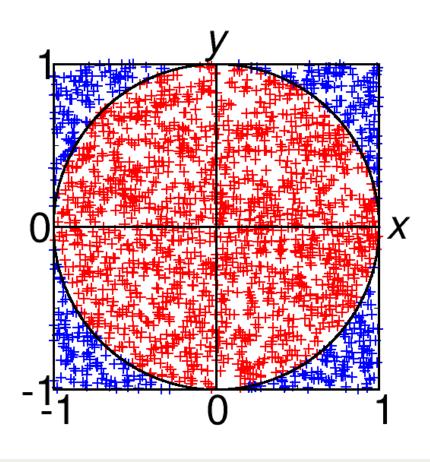
Summary: Monte-Carlo Tutorial


Julia Fischer Oskar Hartbrich Tobias Neumann

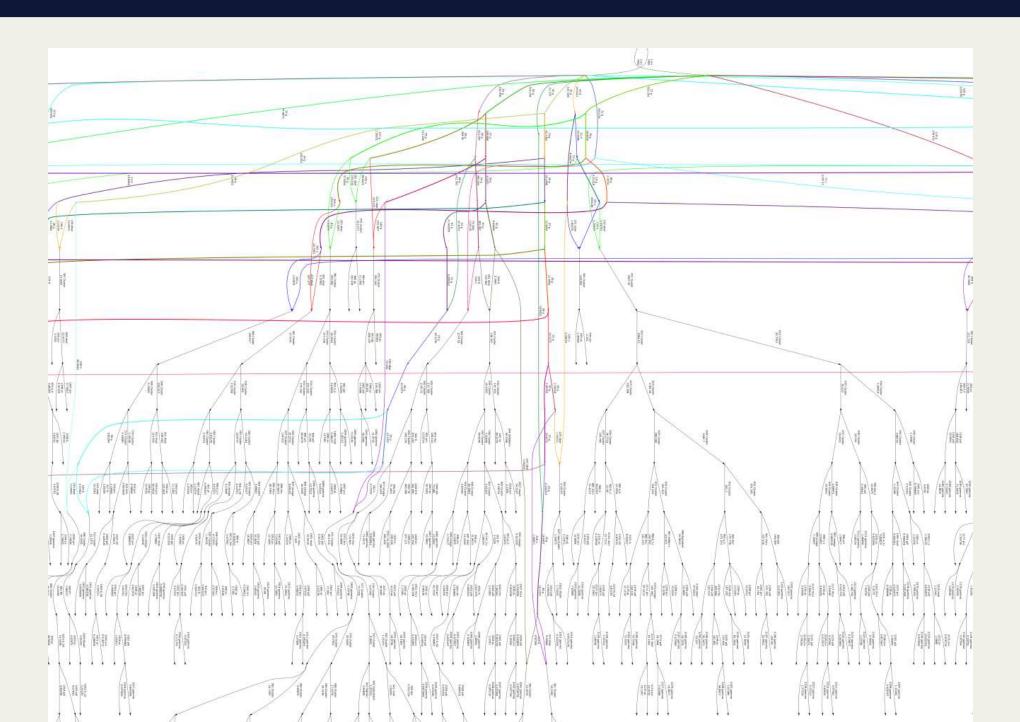
March 12, 2010

What is Monte-Carlo Simulation?

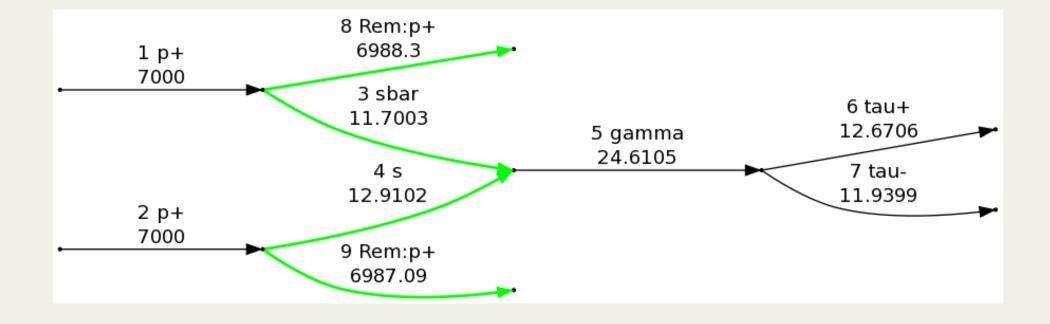
Computational algorithm that relies on repeated random sampling to compute its result

Example: Calculate π

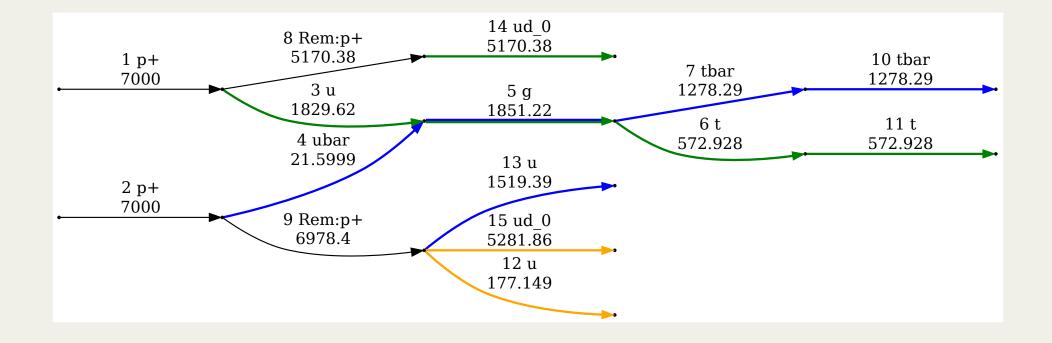
- Random sampling of points in box
- Box area: 4
- Circle area: π
- \frown Probability for hit: $\pi/4$


- Monte-Carlo based tool for computing events at particle colliders
- Great flexibility regarding particle content (even SUSY) and accelerator properties
- What we did:
 - Simulate Drell-Yan events: $q\bar{q} \to (Z,\gamma) \to l\bar{l}$ at LHC and Tevatron

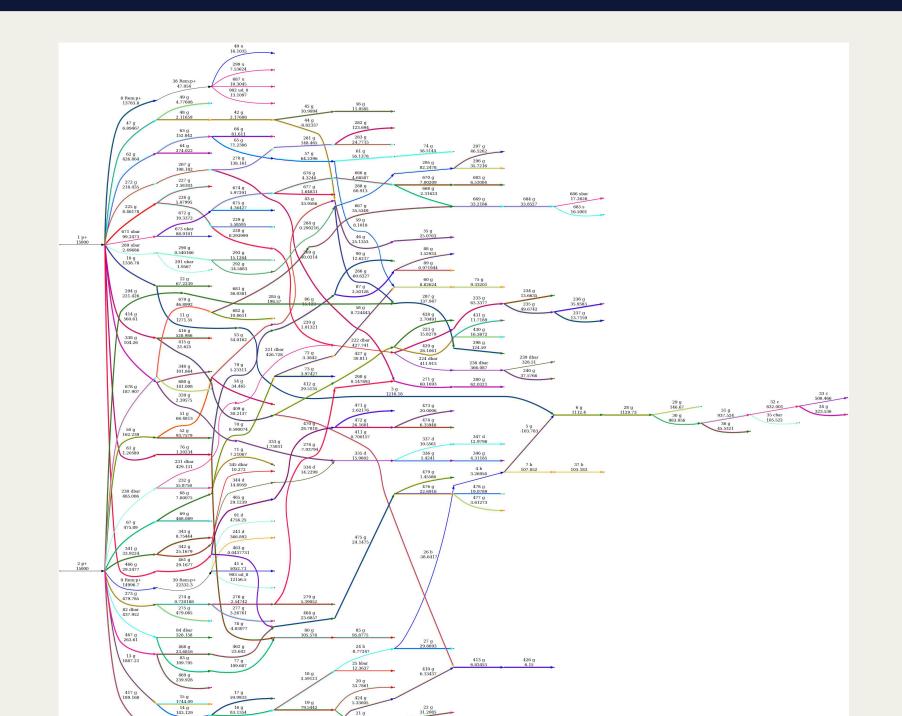
Drell-Yan Eventlog


THE	1										
1	1 Colliding particles:										
2	1	p+	2212	(3	,8)						
Ξ						0.000	0.000	7000.000	7000.000	0.938	
4	2	p +	2212	(4	,9)				7000-000		
						0,000	0.000	-7000,000	7000.000	0,938	
0 7											
2	Stor	3									
q		Step 1 intermediates:									
10	3	sbar		[1]	(5)	{-1}					
11						-0.000	0,000	11,700	11,700	0.000	
12	4	S	3	[2]	(5)	{+1}					
13				82 (0.000	-0,000	-12.910	12.910	0.000	
14	5	gamma	22	[3,4	4] (6			\$\$ \$	90 <u>844</u>	<u> 28</u> 2	
15		63 4 - 1				0.000	0.000	-1.210	24.611	24.581	
10	6	final: tau+	75	[5]							
18	0	Laut	- 10	151		9.490	-1.653	-8.037	12.671	1.777	
14	7	tau-	15	[5]		5.450	1.035	-0.037	12.071	± • 1 1 1	
20		1000	15733	1		-9.490	1.653	6.827	11.940	1.777	
21	8	Rem:p+	82	[1]	>9	9 {+1}					
2.2						0.000	0.000	6988.300	6988.300	0.937	
23	9	Rem:p+	82	[2]	8>	> {-1}					
.24						-0.000	0.000	-6987.090	6987.090	0.937	
25										а а	A 22 2 2 2 2
										1,1	Anfang

- Monte-Carlo based tool for computing events at particle colliders
- Great flexibility regarding particle content and accelerator properties
- What we did:
 - Simulate Drell-Yan events: $q\bar{q} \to (Z,\gamma) \to l\bar{l}$ at LHC and Tevatron
 - Plot results


Too much!

- Monte-Carlo based tool for computing events at particle colliders
- Great flexibility regarding particle content and accelerator properties
- What we did:
 - Simulate Drell-Yan events: $q\bar{q} \to (Z,\gamma) \to l\bar{l}$ at LHC and Tevatron
 - Plot results
 - Reduce simulation complexity



- Monte-Carlo based tool for computing events at particle colliders
- Great flexibility regarding particle content and accelerator properties
- What we did:
 - Simulate Drell-Yan events: $q\bar{q} \to (Z,\gamma) \to l\bar{l}$ at LHC and Tevatron
 - Plot results ..
 - Reduce simulation complexity ..
 - Change particle properties..

- Monte-Carlo based tool for computing events at particle colliders
- Great flexibility regarding particle content and accelerator properties
- What we did:
 - Simulate Drell-Yan events: $q\bar{q} \to (Z,\gamma) \to l\bar{l}$ at LHC and Tevatron
 - Plot results ..
 - Reduce simulation complexity ..
 - Change particle properties ..
 - Add matrix elements ..

LHC II at 30 TeV - All Matrix Elements

- Monte-Carlo based tool for computing events at particle colliders
- Great flexibility regarding particle content and accelerator properties
- What we did:
 - Simulate Drell-Yan events: $q\bar{q} \to (Z,\gamma) \to l\bar{l}$ at LHC and Tevatron
 - Plot results ..
 - Reduce simulation complexity ..
 - Change particle properties ..
 - Add matrix elements ..
 - Play around

Real World

- Complicated Theory
- Single event plots out of interest
- Interest in large number of runs for in-depth statistical analysis; used for comparison to experimental results and fitting
- Other Frameworks: PYTHIA, Sherpa, Alpgen, etc.
- Detector geometry not included in simulation