

MicroTCA activities in KEK and J-PARC

Oct. 06, 2019

J-PARC/KEK, Accelerator division

MR Control group

Norihiko Kamikubota

Menu today

- 1. MTCA in KEK
- 2. MTCA in J-PARC
- 3. my experience
- Add) MTCA in SPring-8
- The last page as Summary

<u>About myself (Norihiko Kamikubota)</u>

- Norihiko has been in change of **controls for J-PARC Main Ring (MR)**
- Many of this ppt pages are from **RF members** in KEK and J-PARC
 - Thanks to Sugiyama-san, F.Tamura-san, T.Kobayashi-san, and more
 - Their developments were shown also in past LLRF workshops and IPAC

1. MTCA in KEK

e[±] accelerators complex

LINAC: Injector for synchrotrons

SuperKEKB: e[±] collider for HEP experiment (Belle2)

Photon Factory(PF) /PF-AR: SR photon source

STF: Superconducting RF Test Facility for ILC

ATF: Accelerator Test Facility for ILC

cERL: Test Facility for a future 3-GeV Energy Recovery LINAC (ERL)

1. MTCA in KEK (continued)

- In 2008, a development of digital board based on MTCA.0 was started, for common use at RF control among SuperKEKB, cERL, and STF in KEK. => Type 1, Type 2
- In 2013, the development of the module based on MTCA.4 for the LLRF system of STF. => Type 3 (with SFPs for external comminication)
- Modules made by Mitsubishi Electric TOKKI systems Co.,Ltd
 - EPICS-IOC is running on the LINUX installed on the CPU in the FPGA

1. MTCA in KEK (continued)

Our development using µTCA(.0) was started 2009 as common-use hardware for these facilities.

Mainly these are applied to Low Level RF control for cavity-voltage regulation and cavity tuning.

- 2 types of μTCA(MTCA.0) boards (Type1&2) : They were successfully worked in beam operation.
- New development using MTCA.4 (Type3) standard was started last year for STF-2. They have not yet used for beam operation. Beam test operation is scheduled next year. (Text is at Dec,2016)

1. MTCA in KEK (continued)

• The regulation stability is **0.02%** in amplitude and **0.02 deg.** in phase.

2. MTCA in J-PARC

- J-PARC is an accelerator complex, located in Tokai-mura, Japan
 - Linac(LI), Rapid-Cycle Synchrotron (RCS), and Slow-cycle Main Ring (MR)
 - Jointly operated by JAEA and KEK
 - JAEA: 400MeV LI, 3GeV RCS ; 25Hz
 - KEK: 30GeV MR ; 2.48s(NU) or 5.20s(HD)
 - 2006/2007/2008 1st beam to LI/RCS/MR

2. MTCA in J-PARC (continued)

Platforms currently used in J-PARC accelerators

VME / cPCI systems used for high-end / complicated applications (timing, beam instrumentation, LLRF, etc.):

BPM

Timing RCS BPM controller stem Well-has RCS, MR: VME VME+NIM RCS Specialized 9U VME

RCS/MR

LLRF

Among candidate of replacement, the RCS LLRF is on going with MTCA. (next page)

Timing and RF

VME, NIM, cPCI modules were used more than 10 years old =Difficulty in the maintenance due to discontinued modules and outdated FPGA.

Need more functionalities for higher intensities and stability.

2. MTCA in J-PARC (continued)

- RCS LLRF
 - beam-loading compensation to achieve high-intensity operation
 - VME-based feedforward modules -> MTCA-based
- AD/DA AMC module for RCS
 - 8 ADC and 2 DAC
 - Analog signals through Zone3 connector
 - PCI-ex and GbE through Zone1 AMC connector
 - EPICS-IOC on embedded Linux on Zync FPGA
 - Developed by Mitsubishi TOKKI company

FPGA	Zулад XC7Z045-1FFG900C		
OS	Xilinx Linux (EPICS-IOC)		
RAM	DDR3-SDRAM 1GiB×2 (PL, PS)		
FPGA Configuration	QSPI FLASH-ROM 16MiB, SD Card, Remote Update		
ADC	8ch, 16bit, 370MSPS max., BW 800MHz		
DAC	2ch, 16bit, 500MSPS max.		
Zonel (AMC Connector)	Port[0:1]:1000BASE-BX, Port[4:7]: PCI Express Gen2		
	Port[17:20]:M-LVDS, IPMB: IPMI v1.5 support		
Zone3 (ZD connector)	Class A1.1(RFin×8ch,DCout×2ch,CLKin×1,DIO×6pair,TCLKout)		
SFP	2ports		
Switch	8bit DIP-switch		
Front Panel LED	Hot swap status (blue), Error status (red), Running status (green)		
Size	PCIMG MTCA.4 Double-Width Full Size 148.5*28.95*181.5 [mm]		

connecto

2. MTCA in J-PARC (continued)

<u>RCF LLRF</u>

- Single MTCA.4 shelf can supports modules for the all the 12 cavities for RCS.
- Shelf and Modules are fabricated in FY2018 and under debug for the installation during this summer (2019).

3. My experience

- J-PARC timing system
 - was developed during 2002-2005, and has been used since 2006.
 - VME-modules (to control) and NIM modules (to generate signals)
 - Discussion for the next decade in 2015-2016
- As a next infrastructure after VME
 - MTCA is an attractive candidate
 - I suggested to introduce MTCA for timing and beam-diag. modules for J-PARC (next page, 2015)
- But failed .. Why ?
 - Discussion with a company showed very high cost for us
 - beam-diag. group showed less interests to change VME
 - New timing system (hardware) -> use VME modules again
 - Some "New" timing modules (i.e. a new timing master/VME), started operation Oct.01.2019
 - more "new timing of J-PARC" will be reported in next icalepcs ...

追加) MTCA in Spring-8

- Spring-8
 - Located in Hyogo, western part of Japan
 - Injector, Spring-8 ring (SR 8GeV), SACRA (XFEL 4-8GeV)

- Plan to inject electrons from SACLA to SR (instead of an old-injector)
 - Use low-emittance beam of SACLA for SR

Information from: Oshima-san and Fukui-san

追加) MTCA in Spring-8 (continued)

- A MTCA.4 system to control bucket-injection timing
 - Timing control (delay calculation) for bucket injections from SACLA to SR
 - Tested in 2018-2019, will be used in operation after 2020

16bit 125Msps digitizer AMC (struck)

Firmware (FPGA) by Mitsubishi TOKKI

RTM (candox)

Ref) IPAC19 THPRB034, or TUAPP02 of Icalepcs2019

The last page.. (Summary)

- MTCA in KEK
 - Three types of MTCA units (MTCA.0, MTCA.4) were developed
 - Many RF teams have used them, even for small groups
- MTCA in J-PARC
 - Development for new LLRF system for RCS(Ring) is on going
- my comment
 - We still keep using old infrastructure (VME for both KEK, J-PARC)
 - When we replace an old system (llrf, timing,..), sometimes MTCA was selected (sometimes not)
 - One company (Mitsubishi TOKKI) can make MTCA modules in Japan, and this would cause higher cost in Japan
- MTCA in SPring-8
 - A MTCA.4 system was reported in IPAC19 THPRB034
 - Spring-8 control group has interested in "mass introduction" of MTCA, as a replace of VME infrastructure -> Icalepcs2019 TUAPP02 by Fukui-san

Thank you For your attention

MTCA-AMC types used in each Facility

Facilities	MTCA standard	AD / DA / FPGA / Software	Application
SuperKEKB	μ ΤCA (MTCA.0)	ADC : 4 x 16-bit (LTC2208, 130 MSPS) DAC : 4 x 16-bit (AD9783, 500 MSPS) Virtex-5 FX, Wind River Linux on PowerPC	LLRF control & BPM for IP-FB
		ADC : 2 x 14-bit (ADS5474, 400 MSPS) Virtex-5 FX Type2	Optical delay cont. for RF-Reference
	MTCA.4 (~2015)	ADC : 2 x 16-bit (AD9650, 105 MSPS) DAC : 12 x 16-bit (AD9783, 500 MSPS) Zynq-700 FPGA, Xilinx Linux on ARM	Orbit FB@IP
STF	μ ΤCA (MTCA.0)	ADC : 4 x 16-bit (LTC2208, 130 MSPS) DAC : 4 x 16-bit (AD9783, 500 MSPS) Virtex-5 FX, Wind River Linux on PowerPC	LLRF control (Cav-Vc & Tuner)
STF-2	MTCA.4 (~2015)	ADC : 14 x 16-bit (AD9650, 105 MSPS) DAC : 2 x 16-bit (AD9783, 500 MSPS) Zynq-700 FPGA, Xilinx Linux on ARM	LLRF control (Cav-Vc & Tuner)
cERL	μ TCA (MTCA.0)	ADC : 4 x 16-bit (LTC2208, 130 MSPS) DAC : 4 x 16-bit (AD9783, 500 MSPS) Virtex-5 FX, Wind River Linux on PowerPC	LLRF control (Cav-Vc & Tuner)

- Our development using µTCA(.0) was started 2009 as common-use hardware for these facilities.
 Mainly these are applied to Low Level RF control for cavity-voltage regulation and cavity tuning.
- 2 types of μTCA(MTCA.0) boards (Type1&2) : They were successfully worked in beam operation.
- New development using MTCA.4 (Type3) standard was started last year for STF-2. They have not yet used for beam operation. Beam test operation is scheduled next year.

T. Kobayashi, MTCA's at KEK, The 5th MicroTCA Workshop 7th December 2016

J-parc accelerators

- JAEA: 400MeV LI, 3GeV RCS ; 25Hz
- KEK: 30GeV MR ; 2.48s(NU) or 5.20s(HD)

- 2006/2007/**2008** 1st beam to LI/RCS/**MR**
- J-PARC (and S.KEKB also) is a ...
 - challenging machine toward extreme performance
 - Long-term plan to design goals (need >10 years)
 - design powers: MLF 1MW, MR 750kW (\rightarrow now >1MW powers are discussed)
 - Many parameters: ~100k points to monitor and control
 - Updates, improvements: very frequent (Accelerator complex itself is an experiment) (opposite example is a medical accel.)

Control system must support such activities

- safety – extendability - reliability