XFEL SASE tuning

Matthias Scholz November 19, 2019

European XFEL

What is the aim of this operator training?

 We will discuss how to find and maximize the SASE signal in all beamlines of European XFEL.

Assumed starting conditions

- The electron beam can be transported through the undulator beamline.
- It was verified that the electron beam quality is prepared/sufficient for SASE. A few critical items are:
 - beam optics matching in the injector.
 - correct magnet setup along the beamline.
 - closed dispersion in the injector.
 - proper compression settings in I1, L1 and L2.
- All kind of feedbacks have to be operational e.g. trajectory and compression FB, IBFB etc.
- There are no hardware errors from any undulator component.
- The photon diagnostics in the respective beamline works (especially the FEL imager and the XGM including the HAMP).

Assumed starting conditions

- The electron beam can be transported through the undulator beamline.
- It was verified that the electron beam quality is prepared/sufficient for SASE. A few critical items are:
 - beam optics matching in the injector.
 - These steps were covert in the operator training
 - closed dispersion in the injector.
 - proper compression Start-up procedure
- All kind of feedbacks have to be operational e.g. trajectory and compression FB, IBFB etc.
- There are no hardware errors from any undulator component.
- The photon diagnostics in the respective beamline works (especially the FEL imager and the XGM including the HAMP).

Crucial photon diagnostics devices, FEL imager

- If you have no signal at all, you will need the FEL imager for sure.
- The FEL imager is the device that will show you even the first glow of your signal.
- In addition, the position on the screen gives a first indication on how to continue tuning with orbit modifications (launch).
- The XGM will still show only noise when you have already a clear signal on the FEL imager like shown on the picture on the right hand side.

European XFEL

Crucial photon diagnostics devices, HAMP

The HAMP detector is also very sensitive to small SASE pulse energies.

- Keep in mind that the maximum current of the HAMP must not exceed 7 mA!
- That is also indicated by the red line at the bottom of the plot.
- The maximum voltage setpoint is 1700!
- Please do not forget to reduce the voltage when you are finished.

Crucial photon diagnostics devices, XGM signals

You can start using the following tools as soon as you have a decent SASE signal (>40 uJ).

- SASE fast timing series
 - It shows fast signals (crucial for tuning).
 - You can follow all three beamlines which is helpful e.g. during compression tuning.
 - It is possible to show the SASE signals in normalized mode. That helps when the hard X-ray beamlines and SASE3 are at completely different levels.
- JDDD SASE viewer.
 - Fast signals are shown in the bar plot bottom left. Change the repetition rate of this plot to 10 Hz!
 - You can see the impact on the different bunches along the pulse train when you use more than 2 bunches.

Groups of actuators for SASE tuning

- 1. Launch corrector and aircoil settings
- 2. Bunch compression
- 3. Undulator taper settings
- 4. Phase shifter settings
- 5. Trajectory in the injector section up to L1 (dispersion?)
- 6. Settings of matching quads (beam optics)
- 7. Intensity and position of the IR laser in the laser heater

Case one: you have already a trajectory stored for the same (or for a higher) photon energy.

- Select the file in the trajectory storage server.
- Load the trajectory to the golden and to the reference orbit. Choose the respective subtrain (beamline) before.

- B. Configure the undulator orbit FB such that
 - Launch and undulator BPMs are selected.
 - Launch correctors and and at least one pair of aircoils are selected.

GROSSE HERAUSFORDERUNGEN

Case one: you have already a trajectory stored for the same (or for a higher) photon energy.

- Switch off the default feedback.
- Run the adaptive FB to optimize the launch trajectory into the undulator.
- Remember that it always helps to assist the feedback with some induced orbit jitter using the correctors on the SASE tuning panels.
- Take a new golden orbit with the default orbit feedback and run it again.

Case two: you have to start from scratch.

- The best solution when starting from scratch is to establish the BBA orbit which means typically zero offset in all BPMs.
- This can be achieved using the orbit FB.
- Configure the undulator orbit FB such that
 - Launch and undulator BPMs are selected.
 - Launch correctors and and at least one pair of airs coils are selected.

3. Set the target orbit of the feedback to zero by pressing the respective button.

4. Start the feedback.

As an alternative, you can also use the orbit correction tool to steer the beam to the zero orbit in the undulator.

11

Case two: you have to start from scratch.

- The trajectory achieved with the beam based alignment (BBA) should be good enough to get some lasing. But it does not necessarily have to be the optimum trajectory.
- An optimization of aircoil settings is necessary.
- The maximum number of aircoils in one optimization setup should not be larger than 8.
- Start with aircoils in both planes. Use only aircoils in one plain in the second or third iteration steps.
- Be careful that the section you are optimizing is not monitored by the orbit feedback.
- Start with as few undulator cells closed as necessary to get lasing in the range of 100-200 uJ Add more and more cells during the optimization.

•					💐 Ocelot Inf	erface							
			Optimi	zation Scan Panel	Scan Setup Panel	Objective F	unction Data Browser						
PVs 1 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL3.SA1/	Saved Val.	Current Val	. Min	Max	Active	1			Objective Fu	nction Monitor			
2 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL3.SA1/	0.2021	0.2021	-0.400	0.400			values						
3 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL4.SA1/	0.2752	0.2752	-0.400			0.8							
4 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL4.SA1/	0.0494	0.0494	-0.400	0.400									
5 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL5.SA1/		-0.0222	-0.400	0.400		0.6							
6 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL5.SA1/		0.0294	-0.400	0.400		st_ob							
7 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL6.SA1/	0.0864	0.0864	-0.400	0.400		^e 0.4							
8 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL6.SA1/		0.0595	-0.400	0.400									
9 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL7.SA1/F		0.0558	-0.400	0.400		0.2							
10 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL7.SA1/F		0.0373	-0.400	0.400									
11 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL8.SA1/		-0.0056	-0.400	0.400		00	0.2		0.4	0.6	0.8		
12 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL8.SA1/		-0.0282	-0.400	0.400	0				Time (s	econds)			
13 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL9.SA1/	0.0196	0.0196	-0.500	0.400	0								
14 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL9.SA1/	-0.1444	-0.1444	-0.400	0.400	0				Device	Monitor			
15 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL10.SA1/	0.0855	0.0855	-0.400	0.400	0								
16 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL10.SA1/		0.1012	-0.400	0.400	0	0.8							
17 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL11.SA1/	0.0821	0.0821	-0.400	0.400	0	start)							
18 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL11.SA1/	0.1048	0.1048	-0.400	0.400	0	- 0.6							
19 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL12.SA1/		-0.0807	-0.400	0.400									
20 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL12.SA1/		-0.0221	-0.400	0.400		/ice (/							
21 XFEL.FEL/UNDULATOR.SASE1/CAX.CELL13.SA1/		-0.0029	-0.400	0.400									
22 XFEL.FEL/UNDULATOR.SASE1/CBX.CELL13.SA1/	-0.0348	-0.0348	-0.400	0.400		0.2							
23 XFEL FEL/UNDULATOR SASE1/CAX CELL14 SA1/	0.0239	0.0239	-0 400	10 400		0							
Lindate reference Densi All						0	0.2		0.4 Time (0.6	0.8		
									rime (s	econas)			
Start optimization		Logbook						Help/Docs					

Bunch compression

- 1. A design bunch compression setup can be found in the logbook.
 - 1. doc -> Beam dynamics -> bunch compression setup
 - 2. Remember that the calculated curvature has to be reduced by 150 (e.g. 120 instead of 270). This difference was found by measurements.
- 2. The theoretical compression setting can be used as a start setting.
- 3. Compression setup using the BC2 TDS would be the ideal way how to prepare the bunch compression. This should be used more often in the future!
- 4. However, the practical experience is currently that the final setup is found by empirical tuning of chirps, curvature and third derivative.

Matthias Scholz, XFEL Operator Training, November 19, 2019

Bunch compression, details

Keep in mind that there is possibly more than one RF-flattop active!

Case one: No SASE signal at all

- Use the BCO readback values to compare the actual settings with previous setups (for the same bunch charge).
- Ensure that the bunches are not already over compressed (more chirp has to lead to higher BCO read back values).
- Use the FEL Imager to look for the first SASE glimmer on the screen that no other device can already detect.

Case two: Improve an existing SASE signal

 New distribution of compression between sections: reduce the compression in I1 slightly and compensate with the compression in L1. Redo the same with more compression in I1 and less in L1. Try also all possible combinations of I1, L1 and L2.

• Change the curvature and compensate the compression with the chirp in I1. Redo the same with the third derivative.

Injector trajectory

- 1. It is well known that the wrong injector trajectory can suppress lasing completely.
 - Start with a corrector setup in the injector that was saved before while the machine was lasing.
 - Or correct the beam's trajectory in the section to a golden/reference trajectory saved before when the machine was lasing.
- We have indications that closing the spurious dispersion in the I1-section increases the SASE signals. This can be achieved with the Ocelot optimization tool using the prepared settings (horizontal dispersion and vertical dispersion in the injector).
- 3. You can also use the same correctors (those for dispersion correction) with the optimizer using the SASE signal as target function. Keep in mind that this does only work with about 15 seconds delay between the modification of the corrector's currents and the data taking. This time is needed by the feedback systems along the beamline to restore the previous system setup (in this case mainly the beam's trajectory).

Undulator taper settings

- 1. Taper settings are currently often found by empirical tuning based on start values from previously used settings.
- 2. Keep in mind that the start of the quadratic taper moves downstream with increasing photon energies.
- 3. Try combinations like: reduce the quadratic taper but move it's start one cell upstream.
- 4. Check the movement of all undulator cells! You can see that best on the 'Taper Tuning Panel' available via the button on the top right.

L SASE1 Un	dulator S	Server Con	trols													Ehow Undulator		PARA
ontrois					Group A	ctions			Taper Groups									
velength: UV - 3333 nm M Beam Energy 11500 MeV		·	Set		All stop Active to			Group 1 Ak	/k: linear 4	06 - e-5/cell,	quadratic 7	7.06 - e-5/ce	Open	100				
_99909-90 eV M LLRF Energy 11500 MeV ≥ Enable phase shifter coupling tatus: Ready Server Messages Phase shifter periods: 09		v	Undulator Wavelength 0.1388 nm (max)		All to max. gap Active to r		nax. gap	Group 2 Ak/k: linear 0.00 e-5/cel			I, quadratic 0.00 - e-5/cell, starting at cell 0 -				Park			
		Undula			All close Active to cl		closed gap Group 3 Δk/k: tinear 0.00 - e-5/cel			quadratic 0	0.00 ÷ e-5/ce	Closed	507					
		0.1333 nm (used) 0.1251 nm (min)					HW	AW .			Taper Tuning Panel				Moving			
U40.2250.SA1	Cell 3 U	J40.2256.SA1	Cell 4	U40.2262.5	SA1	Cell 5	U40.2269	SA1	Cell 6	U40.2275	SA1	Cell 7	U40.2281.	SA1	Cell 8	U40.2287.	SA1	Cell 9
Active Taper 1		Active Taper 1	-	Active	Taper 1 -		Active	Taper 1 -		Active	Taper 1 -		Active	Taper 1 -		Active	Taper 1 -	
Air Coll		Vr Coll		Air Coll	0		Air Coll	0		Air Coll	0	-	Air Coil	0		Air Coll	0	
Gap 16.749	Phase Shifter	Gap 16.78	Phase Shifter	Gap	16.754	Phase Shifter	Gap	16.720	Phase Shife	f Gap	16.769	Phase Shifter	Gap	16.766	Phase Shifter	Gap	16.751	Phase Shi
Koffset 0.0000	0.00	Coffset 0.000	0 0.00	Koffset	0.0000	0.00	Koffset	0.0000	0 02	4 Koffset	0.0000	1.88	K offset	0.0000	1.52	Koffset	0.0000	0 3
predicted 2.1799	49.29 mm	predicted 2.179	8 48.87 mm	predicted	2.1798	48.51 mm	predicted	2.1797	49.06 mm	n predicted	2.1795	49.09 mm	predicted	2.1795	50.21 mm	predicted	2.1794	52.08 m
readback 2.1800	#A 9.01	readback 2.179	9 #A 9.00	readback	2.1800	#A 9.00	readback	2.1799	#A 8.9	15 readback	2.1798	#A 8.86	readback	2.1796	#A 8.90	readback	2.1796	127 6
U40.2293.SA1	Cell 10	J40.2299.SA1	Cell 11	U40.2305.5	SA1	Cell 12	U40.2311	SA1	Cell 13	U40.2317.	SA1	Cell 14	U40.2323.	SA1	Cell 15	U40.2330.	SA1	Cell 1
Active Group: 1 -		Active Group: 1	-	Active	Group: 1 -		Active	Group: 1 -		Active	Group: 1 -		Active	Group: 1 -		Active	Group 1	
Air Coll		Nr Coll 😑	-	Air Coll	•		Air Coll	•		Air Coll	•		Air Coll	•		Air Coll	•	
Gap 10.752	Phase Shifter	3ap 16.74	3 Phase Shifter	Gap	16.763	Phase Shifter	Gap	16.778	Phase Shife	Gap	16.760	Phase Shifter	Gap	16.781	Phase Shifter	Gap	16.742	Phase Sh
K offset 0.0000	0 1.16 F	Coffset 0.000	0 0 1.00	Koffset	0.0000	2.24	Koffset	0.0000	0 0.7	o Koffset	0.0000	3.67	Koffset	0.0000	4.62	Koffset	0.0000	O I
predicted 2.1793	48.96 mm	predicted 2.179	2 49.05 mm	predicted	2.1791	50.23 mm	predicted	2.1790	51.00 mm	n predicted	2.1790	51.89 mm	predicted	2.1789	52.66 mm	predicted	2.1786	48.78 1
readback 2.1794	#A 8.91	readback 2.179	3 #A 8.92	readback	2.1792	#A 8.85	readback	2.1790	#A 8.9	6 readback	2.1791	#A 8.78	readback	2.1790	#A 8.74	readback	2.1787	Iπλ
U40.2336.SA1	Cell 17 U	J40.2342.SA1	Cell 18	U40.2348.5	SA1	Cell 19	U40.2354	SA1	Cell 20	U40.2360	SA1	Cell 21	U40.2366.	SA1	Cell 22	U40.2372	SA1	Cell 2
Active Taper 1 -		Active Taper 1	-	Active	Taper 1 -		Active	Group: 1 -		Active	Group: 1 -		Active	Group: 1 -		Active	Group 1 -	
Air Coll		Vr Coll		Air Coll	•		Air Coil	•		Air Coll	•		Air Coll	•		Air Coll	•	
Gap 16.730	Phase Shifter	Sap 16.80	5 Phase Shifter	Gap	16.774	Phase Shifter	Gap	16.798	Phase Shife	f Gap	16.793	Phase Shifter	Gap	16.801	Phase Shifter	Gap	16.825	Phase Sh
K offset 0.0000	0.21	Coffset 0.000	0 1.42	K offset	0.0000	0.05	K offset	0.0000	-0.6	0 Koffset	0.0000	6.32	K offset	0.0000	-7.02	Koffset	0.0000	O A
predicted 2.1781	47.28 mm	predicted 2.177	2 49.76 mm	predicted	2.1761	47.82 mm	predicted	2.1746	47.91 mm	n predicted	2.1728	41.70 mm	predicted	2.1707	41.86 mm	predicted	2.1683	50.21 /
readback 2.1782	#A 9.01	readback 2.177.	2 MA 8.90	readback	2.1763	#A 8.99	readback	2.1748	WA 9.0	4 readback	2.1730	MA 9.68	readback	2.1708	#A 9.72	readback	2.1685	I E A
U40.2378.SA1	Gell 24 L	J40.2384.SA1	Cell 25	U40.2391.5	SA1	Cell 26	U40.2397	SA1	Cell 27	U40.2403	SA1	Cell 28	U40.2409.	SA1	Cell 29	U40.2415.	SA1	Cell 3
Active Taper 1 -		Active Taper Group: 1	-	Active	Group: 1 -		Active	Group: 1 -		Active	Group: 1 -		Active	Group: 1 -		Active	Group 1 -	
Air Coll		Nr Coll		Air Coll			Air Coll	•		Air Coll			Air Coll			Air Coll	0	
Gap 16.862	Phase Shifter	Sap 16.91	6 Phase Shifter	Gap	16.874	Phase Shifter	Gap	16.871	Phase Shife	f Gap	16.874	Phase Shifter	Gap	16.917	Phase Shifter	Gap	16.926	Phase Shi
Koffset 0.0000	0 3.55 F	Coffset 0.000	0 6.55	Koffset	0.0000	0.86	Koffset	0.0000	-2.6	9 Koffset	0.0000	-2.00	Koffset	0.0000	-2.00	Koffset	0.0000	rec/effs. 5
predicted 2.1656	54.25 mm	predicted 2.162	6 57.32 mm	predicted	2.1593	51,48 mm	predicted	2.1556	49.41 mm	n predicted	2.1517	48.87 mm	predicted	2.1475	50.60 mm	predicted	2.1429	50.36 m
readback 2.1657	#A 8.83	readback 2.162	8 #A 8.74	readback	2.1595	#A 8.95	readback	2.1558	#A 9.1-	4 readback	2,1518	#A 9.11	readback	2.1477	#A 9.09	readback	2.1430	ITA S
U40.2421.SA1	Cell 31 U	J40.2427.SA1	Cell 32	U40.2433.5	SA1	Cell 33	U40.2439	SA1	Cell 34	U40.2445	SA1	Cell 35	U40.2452.	SA1	Cell 36	U40.2458.	SA1	Cell 3
Active Taper 1 -		Active Taper 1	-	Active	Taper 1 -	ICICICICI	Active	Taper 1 -		II Active	Taper 1 -	ICICICICI	Active	Taper 1 -	R.H.M.M.M.M	Active	Taper 1 -	HE HE HE
Air Coll	. 00000	Ar Coll		Air Coil	0		Air Coll	0	CHERTER	Air Coll		CHERREN	Air Coll			Air Coll	0	CHERT
Geo 210 000	Phase Shifter	380 210 00	Phase Shifter	Gap	210.000 l	Phase Shifter	Gap	210.000	Phase Shife	Gap	210.000	Phase Shifter	Geo	210.000	Phase Shifter	Gap	210.000	
Koffset 0.0000	rec.loffs. 66.26	Coffset 0.000	0 0.00	Koffset	0.0000	rec.loffs 67.13	Koffset	0.0000	Content 63.4	Koffset	0.0000	rec./offs: 68.48	Koffset	0.0000	mc.loffs. 63.81	Koffset	0.0000	
predicted 2.8880	66 26 mm	predicted 2.888	0 28.63 mm	predicted	2.8880	67 13 mm	predicted	2.8880	63.47 mm	n predicted	2.8880	68 48 mm	predicted	2.8880	63.81 mm	predicted	2.8880	
readback 0.0000	#A	readback 0.000	0 #A 40.52	readback	0.0000	#A	readback	0.0000	#4	- readback	0.0000	#A 20.48	readback	0.0000	#A	readback	0.0000	

Matthias Scholz, XFEL Operator Training, November 19, 2019

- 5. Start a new photon energy typically with zero offsets for the phase shifter gaps.
- 6. Check whether the chosen period of the phase shifters is suitable for the current combination of electron beam energy and photon beam energy.

Matthias Scholz, XFEL Operator Training, November 19, 2019

Phase shifter optimizations

- We have learned in the past that the setup of phase shifters can have a tremendous impact on the SASE pulse energy.
- There are currently two tools available to optimize the phase shifter's setup:
 - 1. The Ocelot optimizer using the prepared settings.
 - 2. The phase shifter scan tool. Please start with the last closed cells when using this tool.
- Keep in mind that the phase shifters are not completely steering free!

For that reason, the scanning/optimization of the phase shifters should be done with the trajectory feedback running using also the undulator BPMs as well as the CBX/CBY aircoils. Use the Matlab tool for this configuration.

ROSSE HERALISEORDERUN

18

Beam optics matching and optimization

- 1. Optics match in the injector using the multi quad scan tool (See the emittance measurement and beam optics matching operator training).
- 2. Set all main magnets to design values and cycled them (use the design kick server panel).
- 3. Optimize the matching upstream the undulators using Ocelot with the prepared settings (e.g. SASE1 matching quad).
- 4. Last chance: One of the last tuning knobs can be the two air coils quads on the main solenoid in the injector.

Laser heater setup

- 1. The laser heater can be currently used for optimization with 3 different parameters:
 - 1. Intensity (change in steps of 100 1000).
 - 2. Horizontal offset (change in steps of 0.01 0.1 mm).
 - 3. Vertical offset (change in steps of 0.01 0.1 mm).
- 2. Test different settings like:
 - 1. More power but also a lager offset and vice versa.
 - 2. Different combinations of horizontal and vertical offsets.

