Study of proton parton distribution functions at high-x (An update post EB2)

Ritu Aggarwal, Allen Caldwell

Overview

- Motivation
- Transfer Matrix for ZEUS detector for high-x data
- Using xfitter (instead of DISPRED) to calculate CTEQ5D cross sections for reweighting.
- Using ZMVFNS for CTEQ5D and corresponding 'internally used schemes" for other Modern PDFs for reweighting (as listed in backup).
- Tables and Plots from the paper.
- Comparison of analysis (vector v) with event by event reweighting and by using integrated born cross sections : NEW

Motivation of studying published high-x data

At present x upto 0.65 ZEUS data is included in PDF fits

Note the uncertainity bands above $x \sim 0.65$, can high-x data impact here

ZEUS Collaboration; H. Abramowicz et al. Measurement of Neutral Current e [±]p Cross-Sections at High Bjorken x with the ZEUS Detector Phys. Rev. D 89 (2014) 072007

High-x cross sections Vs High-Q2 cross sections

From Born level to reconstruncted level

Current Analysis : Extension of ZEUS high-x paper

Data & MC samples (same as high-x paper) 04-06 e-p data (187 pb -1) & 06/07 e+p data (142 pb⁻¹) DJANGOH 1.6, Ariadne 4.12, CTEQ-5D MCs

Using a combination of Ariadne and MEPS MC to get best representation of data. (same as high-x paper)

Also included high-x specific samples

Generated and preserved by Katarzyna, funnelled and reprocessed by Andrii (Q2 > 4000, 10000, 20000 with x > 0.1, > 0.5)

Selection Cuts : Please refer backup for details (same as in high-x paper)

Other Inputs to MC :

(termed as simulation weights in further presentation : w_{MC}^{SM})

Calibrations
Track Matching Efficiency
Track Veto inefficiency
Zvtx Reweighting
(same as in high-x paper)
22.10.2019

High-x updates : Post-EB2

High-x data is still not used..

1) Some of the bins have low number of events / few have zero, so poisson errors are quoted.

2) Ofcourse it has a subset of data (high-Q2 ZEUS data) already included in fits, but high-x data has more to say.

Matrix for the detector response is developed using which number of events reconstructed in data can be predicted from any PDF as below.

 Get a prediction for the generator/hadron level number of events, which is luminosity x radiative corrections x Born cross section.

i.e. $\mu_k = R \lambda_k$

• Apply transfer matrix t_{ii} to get the number of events in a bin j.

$$v_k = T \mu_k$$

R : Radiative corrections (calculated using HERACLES)

 $\lambda_{_{i,k}}$: born level cross sections in i^{th} bin for $k^{\text{th}}\,\text{PDF}$

T[']: has all detector and analysis effects

(probability of an event reconstructed in jth bin to come from ith true bin)

Radiative Corrections

- Ratio of μ (high-x, with Radiative Corrections) and L*σ (Integrated cross section calculated from xfitter master version).
- μ has running alpha (used in MC event generation).
- Integrated cross sections (σ) calculated with fixed alpha.
- Rii calculated for CTEQ5D and HERAPDF2.0 NNLO
- Comparison done
- A cross check is done by Andrii using MC samples generated with RAPGAP with and without radiative corrections.

Ratio of μ_k (high-x, with Radiative Corrections) and L* σ_k (xfitter : without radiative corrections, alpha = 1/137.)

Ratio of Rii HERAPDF2.0/ Rii CTEQ5D

Ratio of generated events with and without radiative corrections for different PDFs using RAPGAP

The shape at lowest Q2 and at low x at each Q2 bin can be reproduced using just Radiative corrections (samples from Andrii).

Ratio of Rii_k to Rii,_{HERAPDF2.0}

Also as the samples are generated using RAPGAP, the ratio is \sim 1 even at the high-x bins

Ratio : K_{ii}/K_{ii}(HERAPDF)

Transfer Matrix : Probability of an event reconstructed in jth bin to come from ith true bin

Tracing back the path of MC reconstructed events in the generated x-Q² phase space

 T_{ii} = probability of an event reconstructed in jth bin to come from ith bin

ZEUS

10⁻¹

 ω_m = MC weights given to mth event in bin i

I = 1 if mth event is reconstructed in bin j, else = 0

ZEUS MC

 10^{-2}

(true x-Q² phase space)

 M_i = total events generated in ith bin

 $T_{ji} = \frac{\sum_{n=1}^{M_i} \omega_n I(n \in j)}{\sum_{n=1}^{M_i} \omega_n^{MC}}$

22.10.2019

High-x updates : Post-EB2

2000

1800

1600

1400

1200 1000

800

600

400

200

1

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

 $v = T \mu$

Heavy Flavor schemes used internally for different PDFs

CT14nnlo	ACOT	Ref (https://arxiv.org/pdf/1506.07443.pdf)					
ABMP16	Fixed flavor nf =3 taken	Ref(https://arxiv.org/pdf/1701.05838.pdf)) >				
ABM 11	Fixed flavor nf =3						
MMHT2014	4 RT-OPT	Ref (https://arxiv.org/pdf/1412.3989.pdf)					
HERAPDE	2.0 RT-opt	Ref (Mandy)					
NNPDF3.1	FONLL-C	Ref(https://arxiv.org/pdf/1706.00428.pdf)					
NNPDF2.3 GMVFNS based on FONLL Ref(https://arxiv.org/pdf/1207.1303.pdf)							

Xfitter can work with Nf=3 for FFN

Comparison of reconstructed events from HERAPDF2.0 with event by event reweighting and by using integrated born level cross section (e+p)

First few points

Q2 x nu(from inte	grated)	nu(from reweigthi	ng) ratio
725 0.06	594.37	594.3	4 1.00005	
725 0.08	440.19	440.1	7 1.00005	
725 0.10	337.19	337.1	91	
725 0.12	302.31	302.3	1 1	
725 0.16	209.11	209.1	2 0.999952	
725 0.19	195.19	195.2	0 0.999949	
725 0.23	160.99	161.0	0 0.999938	
725 0.63	415.41	415.4	1 1	
875 0.05	590.14	590.1	0 1.00007	
875 0.07	517.73	517.7	0 1.00006	
875 0.09	440.96	440.9	5 1.00002	
875 0.11	357.36	357.3	6 1	
875 0.14	313.23	313.2	3 1	
875 0.17	297.57	297.5	8 0.999966	
875 0.21	215.15	215.1	6 0.999954	
875 0.26	186.74	186.7	5 0.999946	
875 0.64	500.88	500.9	0 0.99996	
1025 0.05	429.06	6 429.	02 1.00009	
1025 0.07	374.53	3 374.	50 1.00008	
1025 0.09	337.53	3 337.	52 1.00003	
1025 0.11	290.99	9 290.	99 1	
1025 0.14	260.11	L 260.	12 0.999962	
1025 0.16	183.21	L 183.	21 1	
1025 0.20	182.96	5 182.	97 0.999945	
1025 0.27	279.33	3 279.	35 0.999928	
2600 0.75	28.01	28.03	0.999286	
3000 0.10	73.25	73.24	1.00014	
3000 0.12	80.15	80.15	1	
3000 0.16	62.00	62.00	1	
3000 0.19	64.36	64.36	1	
3000 0.23	46.32	46.32	1	
3000 0.28	42.54	42.55	0.999765	
3000 0.33	35.08	35.09	0.999715	
3000 0.39	23.17	23.17	1	

Last few points

Q2 x nu(from integrated) nu(from reweigthing) ratio

			_				
5250 0.47	13.49	13.4	.9	1			
5250 0.53	8.33	8.33	1				
5250 0.62	7.12	7.12	1		_		
5250 0.84	2.01	2.02	0.	9950	5		
7000 0.12	36.52	36.5	2	1			
7000 0.15	36.85	36.8	35	1			
7000 0.18	42.34	42.3	35	0.99	9764	ł	
7000 0.22	34.51	34.5	1	1			
7000 0.27	33.01	33.0)1	1			
7000 0.32	28.39	28.3	39	1			
7000 0.38	19.58	19.5	8	1			
7000 0.44	11.75	7 4 2	5	T			
7000 0.50	1.42	1.42	1				
7000 0.56	4.44	4.44	1				
7000 0.66	3.57	3.57	1				
7000 0.80	0.59	0.59	:2 :2	1			
9500 0.17	22.52	22.0)Z)7	1 1			
9500 0.21	23.07	23.0	0	1 1			
	22.40	1 5	1 '			1	
9500 0.3		.15	T	1.13)	T	
9500 0.3	6 15	.77	1	5.77		1	
9500 0.4	2 10	.10	1	0.10)	1	
9500 0.4	8 6.4	14	6.4	14	1		
9500 0.5	4 3.6	54	3.6	64	1		
9500 0.6	0 2.2	29	2.2	29	1		
9500 0.7	1 1.3	37	1.3	37	1		
9500 0 8	9 0 1	15	0.1	5	1		
15500 0.0	13 1	 2 55	5.1		5	1	
15500 0.		2.00	~	42.U ΓΟ	رد م	- -	
12200 0.	80 2	.54	- 2	.53	1	.003	395

Difference Negligible!

As on Sep 10 : Integration with xfitter-master had bugs for other schemes. Bugs were reported! This check was done for HERAPDF2.0

22.10.2019

Probability for explaining data from different PDFs

Total probability for each PDF :

$$P(D|M_k) = \prod_j \frac{e^{-\nu_{j,k}} \nu_{j,k}^{n_j}}{n_j!}$$

n_j = events in data in jth bin k : kth PDF index

Calculating	the relative	Probablity	wrt. HERA	PDF
-------------	---------------------	------------	-----------	-----

		e^-p	e^+p			
PDF	P1/P2	p-value	$\Delta \chi^2$	P1/P2	p-value	$\Delta \chi^2$
HERAPDF2.0	1.0	$2.8 * 10^{-02}$	0.00	1.0	0.35	0.00
CT14	$7.6 * 10^{-03}$	$3.2 * 10^{-03}$	9.8	$5.9 * 10^{+05}$	0.82	-27
MMHT2014	$2.1 * 10^{-03}$	$2.3 * 10^{-03}$	12	$4.7 * 10^{+05}$	0.82	-26
NNPDF3.1	$3.2 * 10^{-06}$	$3.9 * 10^{-04}$	25	$9.0 * 10^{+04}$	0.73	-23
NNPDF2.3	$2.3 * 10^{-07}$	$1.3 * 10^{-04}$	31	$4.2 * 10^{+04}$	0.70	-21
ABMP16	$9.0 * 10^{-01}$	$2.6 * 10^{-02}$	0.21	$6.1 * 10^{+02}$	0.64	-13
ABM11	$7.2 * 10^{-01}$	$3.3 * 10^{-02}$	0.67	2.8	0.45	-2.1

Table 1: The Bayes Factor, p-values and $\Delta \chi^2$ from comparisons of predictions using different NNLO PDF sets to the observed numbers of events. The Bayes Factor is calculated relative to HERAPDF2.0, as is $\Delta \chi^2$. The results are shown separately for the e^-p and e^+p data sets.

Equivalent Delta chi2 determination

$$\Delta \chi_{k,l}^2 = -2 \ln \frac{P(D|M_k)}{P(D|M_l)} = -2 \left(\sum_j \nu_{j,l} - \nu_{j,k} + n_j \cdot \ln \frac{\nu_{j,k}}{\nu_{j,l}} \right)$$

22.10.2019

High-x updates : Post-EB2

P-value is calculated by integrating out the probability from the left edge till red for the given PDF

MMHT2014, CT14nlo, NNPDF2.3, ABM better than HERAPDF2.0 for e⁺P, much worse for e⁻P.

Comparing Total Probability for different Pdfs in different x range (integrated bins +2 preceding x bins in each Q2)

		e	_b			e⁺	⁺ p	
	lower 2	x	higher	х	lower x		higher x	
PDF	P1/P2	$\Delta \chi^2$						
HERAPDF2.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
CT14	$6.0 * 10^{-01}$	1.0	$1.3 * 10^{-02}$	8.7	$1.6 * 10^{+03}$	-15	$3.6 * 10^{+02}$	-12
MMHT2014	$7.1 * 10^{-02}$	5.3	$2.9 * 10^{-02}$	7.1	$1.3 * 10^{+03}$	-14	$3.7 * 10^{+02}$	-12
NNPDF3.1	$9.1 * 10^{-05}$	19	$3.5 * 10^{-02}$	6.7	$2.5 * 10^{+02}$	-11	$3.6 * 10^{+02}$	-12
NNPDF2.3	$8.0 * 10^{-06}$	23	$2.9 * 10^{-02}$	7.1	$1.2 * 10^{+02}$	-9.5	$3.7 * 10^{+02}$	-12
ABMP16	$2.3 * 10^{-01}$	3.0	$4.0 * 10^{+00}$	-2.7	$4.8 * 10^{+01}$	-7.8	$1.3 * 10^{+01}$	-5.1
ABM11	$2.3 * 10^{-01}$	3.0	$3.2 * 10^{+00}$	-2.3	$4.2 * 10^{+00}$	-2.9	$6.7 * 10^{-01}$	0.8

Table 2: The Bayes Factor and $\Delta \chi^2$ (calculated relative to HERAPDF2.0) from comparisons of predictions using different NNLO PDF sets to the observed numbers of events are shown for two different x ranges. The 'higher x' region is defined as the highest three x bins in each Q^2 range. The remaining x range is labeled 'lower x'

A MMHT, CT, NNPDF ABM better for e+P data, HERAPDF2.0 better for e-p data

Statistical and systematic uncertainties

Type of Systematic Uncertainties :

1) Affecting the predictions at generator level (μ values) 2) Affecting the Transfer Matrix T

Type I :

1) Luminosity uncertainty scaling μ values

Type II :

1) MC statitical fluctuations (uncorrelated uncertainty)

2) All correlated and uncorrelated systematic uncertainties as in high-x paper

3) Choice of PDF for building T

Nomalization Error : Vary M by 1.8 % up and down and calculate In P.

Internal Document Table 1

		e ⁻ p			e+p						
PDF	lower	lower x		er x	lower a	r	high	er x			
	P1/P2	$\Delta \chi^2$	P1/P2	$\Delta \chi^2$	P1/P2	$\Delta \chi^2$	P1/P2	$\Delta \chi^2$			
+1.8~%											
HERAPDF2.0	$1.7 * 10^{-03}$	12.77	0.08	5.04	$8.65 * 10^{-05}$	18.71	0.01	9.79			
CT14	$2.8 * 10^{+01}$	-6.67	15.99	-5.54	$4.94 * 10^{-02}$	6.01	0.37	2.01			
MMHT2014	$1.1 * 10^{+02}$	-9.49	12.92	-5.12	$1.13 * 10^{-01}$	4.36	0.31	2.33			
NNPDF3.1	$4.9 * 10^{+03}$	-16.98	15.26	-5.45	$2.16 * 10^{+00}$	-1.54	0.36	2.05			
NNPDF2.3	$1.8 * 10^{+04}$	-19.59	18.28	-5.81	$5.95 * 10^{+00}$	-3.57	0.41	1.76			
ABMP16	$3.7 * 10^{-01}$	2.01	0.30	2.39	$2.60 * 10^{-03}$	11.90	0.02	7.85			
ABM11	$9.6 * 10^{-03}$	9.29	0.07	5.28	$2.95 * 10^{-04}$	16.25	0.01	9.95			
			-1.8	8 %							
HERAPDF2.0	$6.9 * 10^{-01}$	0.74	1.70	-1.06	$9.27 * 10^{+01}$	-9.06	30.39	-6.83			
CT14	$4.9 * 10^{-05}$	19.85	0.01	9.35	$1.81 * 10^{-01}$	3.42	0.66	0.83			
MMHT2014	$1.2 * 10^{-05}$	22.62	0.01	8.93	$8.01 * 10^{-02}$	5.05	0.77	0.51			
NNPDF3.1	$3.1 * 10^{-07}$	29.99	0.01	9.26	$4.39 * 10^{-03}$	10.86	0.67	0.79			
NNPDF2.3	$8.5 * 10^{-08}$	32.56	0.01	9.61	$1.62 * 10^{-03}$	12.85	0.59	1.07			
ABMP16	$3.5 * 10^{-03}$	11.32	0.46	1.55	$3.26 * 10^{+00}$	-2.36	11.69	-4.92			
ABM11	$1.2 * 10^{-01}$	4.16	1.91	-1.29	$2.77 * 10^{+01}$	-6.64	32.92	-6.99			

Conclusions :

> p-values from different PDFs change differently while moving up or down by 1.8%

22.10.2019

Data sensitivity : change in scale corresponding to 0.5 change in LogP (i.e. 1 unit in chi2)

Only the high-x data taken

Numbers updated in the paper

e-p :	scale LnP 0.986 -164.893 0.999 -165.394 0.974 -165.383	e+p	Scale : <mark>0.95</mark> 0.965 0.936	LnP -148.823 -149.361 -149.318	
Data sensitivity	~ +-1.2%			+-1.49	%

Major Systematic Errors : New a_ij according to systematic variation up and down.

- Electron Energy Scale : varied by 0.5%
- Electron energy resolution : varying the smearing factor by 10%
- Jet Energy : varied by 1%
- Jet X-Projection on FCAL varied by 5 mm
- Jet Y-Projection on FCAL varied by 5 mm
- Isolation cut varied by 2 GeV
- Ariadne-MEPS combination varied (0.3+-0.3)
- ■The FCAL-BCAL Crack cut on electron angle varied by 0.015rad

Including the systematic uncertainty :

- 1) Re-evaluate the Transfer Matrix with the given systematic check
- 2) Calculate the new predicttion to the data
- 3) Calculate the new probability from the prediction
- 4) Evaluate Bayes factor and chi square wrt to the nominal MC

Statistical Uncertainty calculated using bionomial errors and found to be very small (with in 1%) when the high-x Specific MC is included

$$\delta a_{ij}^{\text{stat}} = \sqrt{\frac{a_{ij}(1 - a_{ij})}{M_i}}$$

Where Mi are the total number of events Generated in MC

Major Systematic Errors : New a_ij according to systematic variation up and down.

Internal Document Table 2

	e ⁻ p		e+j	þ
Systematic	P1/P2	$\Delta \chi^2$	P1/P2	$\Delta \chi^2$
Electron energy scale	$0.504 \\ 0.099$	$1.37 \\ 4.62$	$\begin{array}{c} 0.103 \\ 0.850 \end{array}$	$\begin{array}{c} 4.54 \\ 0.33 \end{array}$
Electron energy resolution	$0.224 \\ 1.309$	$2.99 \\ -0.54$	$1.904 \\ 0.217$	$^{-1.29}_{3.06}$
Hadronic energy scale	$\begin{array}{c} 0.770 \\ 1.146 \end{array}$	$0.52 \\ -0.27$	$0.696 \\ 1.112$	$0.72 \\ -0.21$
MEPS/Ariadne reweighting	$3.673 \\ 0.110$	$-2.60 \\ 4.41$	$1.068 \\ 0.605$	-0.13 1.00
F-BCal Crack cut	$0.218 \\ 4.651$	$3.05 \\ -3.07$	$1.080 \\ 0.868$	$-0.15 \\ 0.28$
Electron isolation cut	$1.369 \\ 0.094$	$-0.63 \\ 4.74$	$0.253 \\ 11.246$	$2.75 \\ -4.84$
FCAL alignment (x)	$1.399 \\ 0.939$	$-0.67 \\ 0.13$	$1.014 \\ 0.974$	$-0.03 \\ 0.05$
FCAL alignment (y)	$1.251 \\ 0.887$	$-0.45 \\ 0.24$	$1.608 \\ 0.623$	$-0.95 \\ 0.95$

Table 2: (FOR ZEUS INTERNAL USE) The ratio of probabilities and the corresponding $\Delta \chi^2$ for various systematic checks performed for the e⁻p and e^+ p data sets.

Normalization is the main uncertainty

22.10.2019

Systematic Errors : Considering various vectors for HERAPDF2.0

Internal Document Table 3 and 4

		e	р		e^+p			
	lowe	er x	high	er x	lowe	er x	high	er x
Eigen Vector	P1/P2	$-\Delta \chi^2$	P1/P2	$-\Delta \chi^2$	P1/P2	$-\Delta \chi^2$	P1/P2	$-\Delta\chi^2$
0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00
1	0.98	0.04	0.99	0.02	0.84	0.34	1.00	-0.00
2	0.99	0.02	1.00	0.00	1.12	-0.23	0.96	0.08
3	1.08	-0.15	1.05	-0.10	1.48	-0.78	1.09	-0.17
4	0.89	0.24	0.94	0.12	0.63	0.92	0.88	0.25
5	1.49	-0.79	1.19	-0.35	1.55	-0.88	2.09	-1.47
6	0.64	0.90	0.78	0.50	0.60	1.02	0.44	1.64
7	1.31	-0.54	1.22	-0.40	2.91	-2.14	1.55	-0.87
8	0.65	0.86	0.80	0.46	0.30	2.43	0.61	0.98
9	0.59	1.04	0.75	0.57	0.43	1.70	0.40	1.84
10	1.55	-0.88	1.22	-0.40	2.12	-1.51	2.28	-1.65
11	0.90	0.20	0.94	0.13	0.80	0.45	0.71	0.68
12	1.07	-0.14	1.04	-0.09	1.19	-0.35	1.34	-0.58
13	0.85	0.31	1.12	-0.23	1.65	-1.00	0.56	1.16
14	1.07	-0.14	0.81	0.42	0.55	1.18	1.62	-0.96
15	1.06	-0.12	1.10	-0.19	1.31	-0.55	1.00	-0.01
16	0.93	0.14	0.91	0.19	0.84	0.35	0.97	0.06
17	0.91	0.19	0.92	0.16	1.15	-0.28	0.95	0.10
18	1.04	-0.09	1.06	-0.11	0.80	0.44	0.98	0.04
19	0.92	0.17	1.08	-0.15	0.83	0.38	0.91	0.19
20	1.05	-0.09	0.92	0.16	1.14	-0.26	1.04	-0.07
21	1.57	-0.91	1.31	-0.54	4.10	-2.82	2.35	-1.71
22	0.42	1.73	0.62	0.96	0.15	3.77	0.30	2.39
23	1.26	-0.46	1.19	-0.35	1.17	-0.31	1.69	-1.04
24	0.88	0.26	0.81	0.43	0.72	0.67	0.82	0.39
25	0.83	0.38	0.88	0.26	0.71	0.69	0.76	0.54
26	1.30	-0.53	1.12	-0.23	1.37	-0.63	1.69	-1.05
27	1.29	-0.51	1.18	-0.34	1.78	-1.15	1.35	-0.60
28	1.15	-0.28	1.18	-0.33	1.81	-1.19	1.26	-0.46

		e	p		e ⁺ p			
	lowe	$\operatorname{er} x$	higher x		lower x		higher x	
Variance Vector	P1/P2	$-\Delta\chi^2$	P1/P2	$-\Delta \chi^2$	P1/P2	$-\Delta \chi^2$	P1/P2	$-\Delta \chi^2$
0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00
1	0.94	0.13	0.98	0.05	0.86	0.31	0.92	0.16
2	0.95	0.11	1.15	-0.27	1.52	-0.83	1.32	-0.56
3	0.88	0.25	0.95	0.10	0.83	0.38	0.85	0.33
4	1.05	-0.10	1.02	-0.04	1.12	-0.23	1.07	-0.14
5	1.17	-0.31	1.12	-0.23	1.06	-0.11	1.50	-0.81
6	1.13	-0.25	1.15	-0.28	1.74	-1.11	1.25	-0.44
7	0.97	0.05	0.98	0.03	0.96	0.09	0.96	0.08
8	1.00	0.01	1.01	-0.02	0.94	0.12	1.03	-0.05
9	1.31	-0.54	1.17	-0.31	1.89	-1.27	1.51	-0.82
10	0.90	0.21	0.99	0.03	0.74	0.61	0.93	0.14
11	1.42	-0.69	1.22	-0.40	2.35	-1.71	1.77	-1.14
12	0.68	0.77	0.81	0.43	0.48	1.48	0.61	0.99
13	1.22	-0.40	1.19	-0.36	2.15	-1.53	2.36	-1.72

Table 4: (FOR ZEUS INTERNAL USE) The results from the different Variance Vector variants in HERAPDF2.0 The Bayes factor and respective $\Delta \chi^2$ and respective *p*-values are given for the e⁻p and e⁺p data sets. The first vector (labeled 0) is the nominal prediction.

Table 3: (FOR ZEUS INTERNAL USE) The results from the different Eigen Vector variants in HERAPDF2.0. The Bayes Factor and respective $\Delta \chi^2$ values are given for the e⁻p and e⁺p data sets. The first Eigenvector (labeled 0) is the nominal prediction.

Summary of Changes (Post EB2)

- Using xfitter (instead of DISPRED) to calculate CTEQ5D cross sections for reweighting.
- Using ZMVFNS for CTEQ5D and RT-OPT for all other Modern PDFs for reweighting.
- All the tables and Plots updated.
- Figures containing the comparison of reconstructed events with data with different PDFs icnluded in a separate document for external sharing.
- Tables for the systematical error studies included in s separate document for internal use only.
- Check done for HERAPDF for the analysis with event by event reweighting and by born cross sections, differences found to be negligible.
- Tables with details of events reconstructed from different PDFs in the appedix.
- Changes in text in the Introduction and other sections done for better understanding.

Thanks

Back Up (some Old slides)

Data & MC sample:

04-06 e-p data (185 pb -1) & 06/07 e+p data (141.44 pb⁻¹) DJANGOH 1.6, Ariadne 4.12, CTEQ-5D MCs (Standard Orange) Selection:

Vertex:

Valid vertex && |Zvtx| < 50. cm

Electron:

EM finder e- candidate with Ee>15GeV EmProb >0.001 (θ_{o} >0.3) else EmProb > 0.01

Econe (w/o e+) < 4.0 GeV QEDC rejection Fiducial volume cuts:

BCAL+FCAL e-s no cracks, no RCAL |DME| > 1.4 cm && | DCE| > 0.6 cm In CTD Acceptance

DCA < 10 cm Superlayers > 4 TrkP > 5. GeV

Not in Acc. Of CTD

Pt elec > 30. GeV

Trigger selection: DST 14

Kinematics:

40<Empz<65 Pt/SqrtEt < 5 GeV y_el < 0.80

<u>Jets</u>

1,2,3(<4) jet events Box cut (40.40 cm²) Et (all jets) > 10 GeV

0 jet events (including events rejected in box cut & Et cut) to be assigned to highest x-bin. 31

Comparing Total Probability for different Pdfs in different x range $(x \le 0.6 \& x > 0.6)$

		e ⁻ p				e^+	р		
	lower x	c .	high	higher x		lower x		higher x	
PDF	P1/P2	$\Delta \chi^2$	P1/P2	$\Delta\chi^2$	P1/P2	$\Delta \chi^2$	P1/P2	$\Delta \chi^2$	
<i>CT</i> 14	$2.64 * 10^{-03}$	11.87	0.48	1.46	4722.06	-16.92	112.06	-9.44	
HERAPDF2.0	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	
MMHT2014	$3.79 * 10^{-03}$	11.15	0.53	1.26	4192.28	-16.68	111.37	-9.43	
NNPDF2.3	$7.79 * 10^{-07}$	28.13	0.68	0.77	488.82	-12.38	96.02	-9.13	
NNPDF3.1	$1.01 * 10^{-05}$	23.01	0.74	0.61	953.37	-13.72	100.33	-9.22	
ABMP16	$4.96 * 10^{-01}$	1.40	1.48	-0.78	2305.38	-15.49	53.32	-7.95	
abm11	$1.17 * 10^{-05}$	22.71	1.42	-0.70	61.68	-8.24	0.66	0.83	

Table A.7: (OLD TABLE) The Bayes Factor and $\Delta \chi^2$ (calculated relative to HERAPDF2.0) from comparisons of predictions (at NNLO) using different PDF sets to the observed numbers of events are shown for two different x ranges for the e^+p and e^-p data sets.

At high x MMHT, CT, NNPDF ABM better for e+P data. Disagreement primarily from low x!

22.10.2019

Ratio of m_k (high-x, with Radiative Corrections) and L* σ_k (xfitter : without radiative corrections, alpha = 1/137.)

 $\mathbf{K}_{\mathbf{ii}}$

Ratio of Kii HERAPDF2.0/ Kii CTEQ5D

Cross Checks by Katarzyna

Recalculated the PDF uncertainty as parametrization is to be taken as an envelope and not to be added in quadrature

xfitter environment is good enough to be used for the analysis

actual numbers that are used for getting number of events on figures 2-4 were cross checked, (random samples)

different PDFs differ more that PDF uncertainty allows (As demsonstrated in this plot prouced by Katarzyna, "second analysis" on this remark !!!)

Comments from PP-1

The discrepancies are not entirely new. They are now more visible, because a linear x-scale is used. This should be somehow reflected in the text.

perhaps even point at the figure in the e+p NC ZEUS paper

EB should make suggestion.

Slang should be avoided.

agreed

The nomalisation issue should be discussed in a clear way. Each PDF fit ends up with a different luminosity used. This is on the several % level.

EB should make text suggestions

Olaf and Allen will discuss whether there is an "overall number" that reflects the strength of the data

Done

All plots showing HERAPDF and its uncertainties have to show

NNLO plus full uncertainties [with parameterisation as an envelope]

done

The comparison of cross section predictions was shown for, x values different than in the paper and no integration was performed.

That is okay for a check at this level, BUT it leaves the integration

agreed in last discussion that this check OK. Integration is still being worked on.

Integration was compared to Mandy's old computation on radiative corrections. There were differences on the % level.

Uncertainties on the integration will be reduced to well below the % level by better integration methods.

agreed, but calculations are slow because xFitter is slow and this takes some time

2 bins checked which had difference of ~1.2% with Mandy's numbers, now with 2 million random number smapling difference is % level.

X bin Mandy Random Integration old 0.6-0.7 0.8255 0.8210 0.8150 0.7-1.0 0.1912 0.1907 0.1894

Changes and Status of paper at PP2

Major Changes in text :

inclusion of a section discussing how the transfer matrix approach can be used in future PDF extractions as well as a discussion of the effective power of the high-x data points along the lines suggested by Ola Changes expected :

Update in the tables and plots with the given improvements in the reweighting proceedure

22.10.2019

High-x updates : Post-EB2

Prescription of model fitting to high-x data

Probability of observing Data with given set of PDF parameters θ and nuisance parameters λ :

$$P(D|\theta,\lambda) = \prod_{j} P(n_j|\nu_j(\theta,\lambda))$$

Predicted number of events v_i is given as $\stackrel{j}{:}$

$$\nu_j = \sum_i \nu_i (1 + 0.018 \cdot \lambda_0) a_{ij} (1 + \sum_{k=1} \lambda_k \delta_{ij}^k)$$

 δ 's : one standard deviation due to k correlated systematic sourses λ o : modification in normalization in units of standard deviatiom λ k : shifts in the systematic errors

Where a penalty is added to the loglikelihood function: $\mathcal{L}(\theta, \lambda) = P(n_j | \nu_j(\theta, \lambda)) P(\lambda)$

where the $P(\lambda)$ is a product of Gauss distributions:

$$P(\lambda) = \prod_{k=0} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\lambda_k^2}$$

Uncorrelated uncertainties can be taken into account by folding a Gauss distribution for them with the Poisson distribution :

$$P(n_j|\nu_j) = \int \frac{e^{-\nu_j(1+\epsilon_j)}(\nu_j(1+\epsilon_j))^{n_j}}{n_j!} \frac{1}{\sqrt{2\pi}\delta_j} e^{-\frac{1}{2}(\frac{\epsilon_j}{\delta_j})^2} d\epsilon_j$$

High-x updates : Post-EB2

Statistical Error in MC in various Xsec Bins (with in 1%)

$$\delta a_{ij}^{\text{stat}} = \sqrt{\frac{a_{ij}(1 - a_{ij})}{M_i}}$$

Where Mi are the total number of events Generated in MC

Ratio of N (w/o using Tmn) and N (using calculated using Tmn) for HERAPDF2.0 : An estimate of choice of PDF to build Tmn

Ariadne-MEPS variation: The ARI-MEPS combination is varied in construction of Transfer Matrix.

For most of the bins with in 1%, increases to 2-10% in the highest x-bins at high Q2.22.10.2019High-x updates : Post-EB2

Other Systematic Variation : Ee varied up and down and new Transfer Matrix constructed .

For most of the bins with in 1%, increases to 2-12% in the highest x-bins at high Q2. 22.10.2019 High-x updates : Post-EB2

Other Systematic Variation : Ejet varied up and down and new Transfer Matrix constructed .

22.10.2019

High-x updates : Post-EB2

Other Uncorr Systematic Variation : Eres varied up and down and new Transfer Matrix constructed .

Other Uncorr Systematic Variation : Econe varied up and down and new Transfer Matrix constructed .

46

Why do we study in Probability numbers

What types of probabilities do we expect ?

E.g., imagine you expect 1 event, and measure 1, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-1} \approx 0.37$$

E.g., imagine you expect 10 events, and measure 8, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-10} \frac{10^8}{8!} \approx 0.11$$

E.g., imagine you expect 100 events, and measure 90, then the probability is

$$P(n|\nu) = e^{-\nu} \frac{\nu^n}{n!} = e^{-100} \frac{100^{90}}{90!} \approx 0.02$$

If we have 150 bins with probabilities ranging from a few % to few 10 %, then

$$P(\{n\}|\{\nu\}) = \prod_{i=1}^{150} e^{-\nu_i} \frac{\nu_i^{n_i}}{n_i!} \text{ maybe } 10^{-200} \quad \ln P \approx -500$$

22.10.2019

Hign-x updates : Post-EB2

Why do we study in Probability numbers

If the likelihood (product of the data probabilities) is a product of Gaussian distributions, then we have

$$\mathcal{L} \propto e^{-\chi^2/2}$$
 and $\ln \mathcal{L}_1 - \ln \mathcal{L}_2 = \frac{1}{2}(\chi_2^2 - \chi_1^2)$

So we can translate differences in the ln of the probabilities (multiplied by -2) to equivalent chi squared differences

If we look at ratios of probabilities, and again assuming Gaussian distributions, then

$$\frac{P_1}{P_2} = e^{-(\chi_1^2 - \chi_2^2)/2}$$

so taking -2* the natural logarithm of a probability ratio is again equivalent to a chi squared difference

FIGURE 4. Distribution of expected values for $\ln P(D|M = CTEQ)$ for the e⁺p data set. The arrow shows the value found in the data.

High-x updates : Post-EB2

The high x bins with x_bin_centre > 0.6

Q2	x N_da	ta
650 - 800,	0.26 - 1.00, 50	4,
800 - 950,	0.28 - 1.00, 67	1,
950 - 1100,	0.32 - 1.00, 4	14,
1100 - 1300,	0.34 - 1.00,	368,
1300 - 1500,	0.36 - 1.00,	202,
1500 - 1800,	0.39 - 1.00,	173,
1800 - 2100,	0.43 - 1.00,	74,
2100 - 2400,	0.46 - 1.00,	51,
2400 - 2800,	0.50 - 1.00,	36,
2800 - 3200,	0.54 - 1.00,	19,
3200 - 3800,	0.58 - 1.00,	17,
3800 - 4500,	0.63 - 1.00,	5,
4500 - 6000,	0.69 - 1.00,	3,
6000 - 8000,	0.59 - 0.73,	10,
6000 - 8000,	0.73 - 1.00,	1,
8000 - 11000	, 0.57 - 0.64,	4,
8000 - 11000	, 0.64 - 0.78,	1,
8000 - 11000	, 0.78 - 1.00,	1,
11000 - 2000	0, 0.60 - 1.00,	8,