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In-person discussions between Achim, Dhevan, and llya were arranged to discuss
the details of the analysis procedure.
In particular, the event selection procedure was discussed.

The following four issues were raised and investigated.

1) DIS triggers: In addition to the desired inclusive DIS triggers, four extra triggers
had always been included in the analysis (including preliminaries).

 HPP20 (forward jet in DIS)

* TLT HFL2 (inclusive mesons in DIS)
* TLT HFL6 (dijets in DIS)

 TLT HFL10 (e in DIS)

2) Sinistra charge misidentification: cross-check of PHP contamination.

3) MC truth E - Pz cut for the selection of events used to calculate MC generator
distributions/correlations: Investigate the physics selection vs. experimental bias
resulting from this cut.

4) Event weights to correct the underestimation of secondaries in MC: not applied in
the analysis. The effect on N __has been studied (N __presented in Fig 1 of paper).



Extra triggers:
HPP20, HFLO2, HFLO6, HFL10



DATA MC

The four extra triggers add about 1% more events to our sample.
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With extra triggers / without

DATA MC
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The extra triggers increase the event population at low Q2 by a few percent.
MC reproduces this feature reasonably well.
An additional hump at Q*~500 GeV*? appears in data but not in MC.
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Comparison of p_ and eta distributions
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Comparison of ¢, and ¢, vs An
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Comparison of ¢, and ¢, vs mean p,
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Sinistra charge misidentification
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sinistra fraction
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At low Q?, there are no reliable tracks that can be associated with the cluster in the
CAL. Therefore the correct charge fraction is very small there.

At high Q?, the scattered electron enters a substantial portion of the tracking fiducial
and is therefore more likely to be assigned the correct charge.
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PHP contamination estimation

Data contains DIS + PHP contamination.
Analyzed MC sample contains only DIS.

By comparing the fraction of incorrectly charged sinistras (wrt electron beam charge)
in data and MC, we can estimate the PHP contamination.
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Part of this difference can be due to the modeling of DIS in MC. Therefore, an upper
limit to the PHP contamination is estimated to be 2-4% from this perspective.
This is consistent with the estimation from the previous study using Pythia PHP MC. |,



E — Pz MC truth cut
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Selection of true DIS events in MC
using truth information

For the generator level calculations of the single particle distributions in Figs 1 and 2
in the paper as well as those for ¢_in Figs 7 and 8, DIS events are selected in a

similar way as in data but using truth information:

Q% .. > 5 GeV? (calculated from initial and final state electron)
e, >57°

true

E >10GeV

true

47<E—PZ<69GeV

The issued raised was whether the E-Pz cut induces an experimental bias which a
theoretical calculation cannot easily emulate. The quantity was calculated based on
the particles in ZEUS MC which “should reach CAL” and includes a cut on final state
hadrons.

The E-Pz cut also suppresses events with strong Initial State Radiation (ISR) which
can be easily simulated in a model.

On the next slide E-Pz is calculated two ways and compared.:

e Hadronic E-Pz: calculated from particles which “should reach CAL”

* E-Pz after ISR: calculated directly from the exchanged photon and final state
electron. For strong Initial State Radiation, this will differ from 2*E_ = 55 GeV 14



Horizontal band

HadronicEmPz_ISEmPz

(o)
o
|
<

MC E-Pz after ISR
(@)
o

N
o

Diagonal band

20

10

Entries 1.73462e+08
Mean x 53.79
Mean y 53.15
Std Dev x 4.302

Std Dev y 4.998
-,

Vertical band

0 10 20 30 40

0 II 11 | 11 1 1 | | I | | I | 11|

1 50

MC Hadronic E-Pz

93% of population left
of black line is
contained along the
diagonal enclosed in
red.

The ratio of entries in
the horizontal band to
those to the right of the
black line is less than
1%.

MC generator curves calculated in events with: 47 < MC Hadronic E-Pz < 69.

There are three dominant structures above.

The diagonal band is expected from initial state radiation.
The horizontal band is expected from a loss of hadrons in the ZEUS acceptance.

The vertical band is probably from final state electron radiation (see next slide).
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Event weights
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An event weight based on the fraction of vertex tracks
can be applied to the reconstructed MC to simulate this observation:

O N 5 >< N t rac k S
N. vtx_tracks
Before event weights After event weights
x10° %10°
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Reconstructed tracks from both MC models reveal the same problem
(the observation is model independent).
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The N__distribution is presented in Fig 1 of the paper.
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The weight is not expected to work well at very low multiplicity.
Besides there, the weight causes a ~3% modification to the N __distribution.

ZEUS data differs from Ariadne predictions by as much as 50% at high N __as seen in Fig 1.
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Summary

1) The extra triggers increase the event sample by about 1%. They have a negligible
effect on the control plots and c_.

2) The sinistra candidate charge in data and MC has been used to cross-check the
PHP contamination. It is still “on the order of 1%.”

3) The E-Pz cut in MC using truth quantities mainly removes events with strong Initial
State Radiation.

4) The event weights modify the N __ distribution in Fig 1 of the paper by about 3%.

This is small compared to the observed differences between ZEUS data and Ariadne.

5) All of the analysis comments from the post EB2 discussion have been taken into
account. We are ready to switch back to the paper discussion.
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Other Requests: What exactly is shown when we compare data and MC?
Verbatim from the paper draft “post EB2”

To compare our results to model predictions we select Monte Carlo events based on ()%,
E.. 0., and ¢, which are calculated using initial- and final-state electron momenta. These
quantities were required to be in the same interval as that used with reconstructed data.
Generated events are also passed through the GEANT3 [60] simulation of the particle
transport in the ZEUS detector material to estimate the tracking efficiency. The selection
of Monte Carlo events to compute reconstructed distributions and efficiency corrections

follows the same criteria as for the reconstructed ZEUS data.

Generated and reconstructed primary particles are selected from the same kinematic py
and 7 interval as for reconstructed tracks. Primary generated particles are defined as
charged hadrons with a mean proper lifetime, 7 > 1 c¢m/¢, which were produced directly
or from the decay of a particle with 7 < 1 em/c. This definition is similar to that used
at the LHC [61].
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Other Requests: What kind of corrections were applied to the data?

The main quantity we measure

New Nree New Nree

€42} = Z Z w;; cos [n(p; — ;)] Z Z Wi

e 1,71 e 1,71

The correction factor from MC

o apy(2) ()
Wij = Wy Wy WA

- Wp@ IS the single particle correction factor for particle i. It is the ratio of the # of

generated to reconstructed particles in MC.
- w,, is the two-particle correction factor. To obtain this, we first calculate w @ in the 1%

pass over MC and then apply it in the 2" pass, from which we construct the ratio of the
# of generated to reconstructed pairs. This is Wy,

The comparison of generated ¢ {2} to reconstructed c {2} in MC is the “closure test.”
The application of Wy, IS our method to correct for the closure test.

It is not perfect (probably because it was computed in limited dimensionality).
The remaining smaller closure test is applied as a systematic uncertainty.
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Updated Systematic uncertainties

Type of Systematic

Reference

Variation (s)

MC closure

generator correlations in
MC true DIS events

reconstructed correlations
with all correction factors

in reco DIS events

Z-vertex interval*

Vz| < 30 cm

Separate intervals:

[—30, 0], [0, +30]

Data taking conditions™

All

individual periods 04p to
07p

Efficiency corrections™

ARIADNE based

LEPTO based

Tracking efficiency under-
estimation at low pp *

Using Libov and Bachyn-
ska’s correction factors

1/2 correction factor

DCA cuts*®

DCA xy,z < 2.0 cm

DCA xy,z < 1.0 cm

DIS

hadronic component

selection from

AT < E— P, < 69 GeV

5,49 < E—-P, <171

scattered electron probabil-

ity and polar angle

P.>009. 0. >1rad

FP.>0.8, 8.>0.5

scattered electron chimney
cut (see Fig[48b

Reject (-10 < x < 10 && v
> 110 && z < -141)

Reject (-12 < x < 12 && y
> 100 && z < -141)

HES fiducial/CAL crack
cut in RCAL (see Fig|48b

Reject ( (b < x < 11 &&
y>0) | (=15 < z < =9
&& y < 0)) && z < —141
)

Reject ( (4 < z < 12 &&
y>0)] (16 <zxz< -8
&& y < 0)) && 2 < —141)

Table 9: Systematic variations.
also recalculated.

* means that the efficiency corrections from MC were

Recalculated

Recalculated

Recalculated

New: requested from EB2 minutes

Recalculated

Recalculated
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