ψ' and J/ψ in photoproduction: muon corrections revisited

G. Grzelak

ZEUS Analysis Forum, DESY, 23-Oct-2019

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

23-Oct-2019 1 / 24

Outlook: R : psi' to J/ψ cross section ratio

- ψ' discrepancy in 2-prong (μ⁺μ⁻) and 4-prong (μ⁺μ⁻π⁺π⁻) channels
- can be just fluctuation ($2 \div 2.5\sigma$ in 3 W bins) (?)
- can be due to systematics of muon corrections
 - ightarrow some effects do not cancel in $\psi'/J/\psi$ ratio

- this analysis is entirely driven by muons starting from trigger level
- reliable muon corrections are crucial
- trigger muon corrections were never before developed for HERA II (only off-line corrections for GMUON do exist)

Muon corrections: old approach

- single muon corrections it (*p_t*, *p_z*; η) bins *p_t* in Barrel, *pz* in Endcaps
- extracted for DATA and MC using elastic di-muon sample (J/ψ, ψ' and Bethe-Heitler)
- TAG and PROBE method (second muon as independent tagger)
- separate set of corrections for each trigger level and off-line muon reconstruction
- ... and for each muon detector: FMUON, BRMUO, BAC and CAL (off-line only)
- ... and for each HERA II data taking period (0304p, 05e, 06e, 0607p)
- applied using "hit and miss" method

Old approach: pros and cons

- textbook approach, no simplified assumptions
- can account for cross-triggers
- to complicated scheme (taking into account limited statistic of data)
- subject to statistical fluctuations (at extraction and application stage)
- hard to control systematics
- additional technical problems in regions where standard MC is already overcorrected (like FMUON) "hit and miss" cannot create new events...

Muon corrections: new approach

- use weighted muon corrections
- single muon corrections it (*p_t*, *p_z*; η) bins *p_t* in Barrel, *pz* in Endcaps
- extracted for DATA and MC using elastic di-muon sample (*J*/ψ, ψ' and Bethe-Heitler)
- TAG and PROBE method (second muon as independent tagger)
- one set of corrections for all trigger levels and off-line
- ... and for all HERA II data taking periods
- still separate corrections for each muon detector: MUON chambers, BAC and CAL (off-line only)
- applied by reweighting the MC events

New approach: pros and cons

- deterministic approach (no intristic MC gambling)
- simple control of corrections uncertainties
- DATA statistic still limited but much bigger now: one set of (averaged) corrections for all HEAR II data taking periods
- straightforward treatment of overcorrected MC samples (weight > 1.0)
- in addition:
 - new software framework \rightarrow major work during last months
 - instead of Common Ntuples (CN) a "micro-DST" used (extracted from CN, 115 variables)
 - very fast : 15 min. on BIRD (all DATA and MC) instead of \sim 36 hours for CN
- for a given muon correct the whole chain: FLT-SLT-TLT-REC

(4回) (4回) (4回)

TAG and PROBE: di-muon configurations

• (almost) non ambiguous: 1F1B, 1B1R, 1F1R (used)

• ambiguous: 2F, 2B, 2R (not used)

< ロト < 同ト < ヨト < ヨト

New corrections: example of $(p_z, p_t; \eta)$ maps - DATA

RMUO-BMUO-FMUON (along eta)

- probability (%) to fire FLT-SLT-TLT-REC by muon on $(p_z, p_t; \eta)$ grid
- current choice for small p_t, p_z: 250 MeV per bin
- size of the grid is subject to systematics

New corrections: example of $(p_z, p_t; \eta)$ maps - MC

• RMUO-BMUO-FMUON (along eta)

- different composition of J/ψ , ψ' , Bethe-Heitler MC was tested
- current choice: reweight the MC samples keep the J/ψ : ψ' : BH ratio as in DATA

 $\psi(2S)/J/\psi(1S)$ in PHP

Control plots: no muon corrections

- no muon corrections
- DIFFVM reweighted:
 - W^{δ} : $\delta = 0.67$ for elastic, $\delta = 0.42$ for p-diss. (both J/ψ and ψ')
 - exp(-b|t|): b = 4 GeV⁻² elastic J/ψ
 - exp(-b|t|): b = 5 GeV⁻² elastic ψ'
 - $\exp(-b|t|)$: b = 1 GeV⁻² p-diss. (both J/ψ and ψ')
 - $f_{p-diss} = 0.25$ (both J/ψ and ψ')
 - no reweighting of BH sample keep (elastic ÷ p-diss. ÷ DIS) xsec ratio as predicted by GRAPE
- all above parameters are subject to systematics
- J/ψ: ψ': BH ratio from root TFractionalFitter to di-muon mass spectrum
- final (overall) MC normalization to total number of DATA events

・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Control plots, no corrections: $M(\mu^+, \mu^-)$

- ALL events and 3 W bins (30-80), (80-130), (130-180) GeV
- $M(\mu^+, \mu^-)$ is insensitive for muon corrections

イロト イポト イヨト イヨト

Control plots, no corrections: W

W: 2-prongs

excess of events for low W (FMUON)

Control plots, no corrections: $\theta_{\mu^{\pm}}$ in mass bins

• ALL events, BH-IoM, BH-hiM, J/ψ peak, ψ' peak

Control plots: weighted muon corrections

- weight is the DATA/MC ratio of probabilities on $(p_z, p_t; \eta)$ grid
- final weight: product of all individual weights for AND'ed independent conditions (two muon confirmed by CAL VM finder)
- if OR between two muons required (at least one muon in muon chambers): $P^{DATA} = P_1^{DATA} + P_2^{DATA} - P_1^{DATA} * P_2^{DATA}$ $P^{MC} = P_1^{MC} + P_2^{MC} - P_1^{MC} * P_2^{MC}$ $w = P^{DATA} / P^{MC}$

Control plots, after muon corrections: W

W: 2-prongs

good agreement

23-Oct-2019 15 / 24

Control plots, after muon corrections: W in mass bins

• BH-IoM, BH-hiM, J/ψ peak, ψ' peak

Control plots, after muon corrections: $\theta_{\mu^{\pm}}$ in mass bins

- ALL events, BH-IoM, BH-hiM, J/ψ peak, ψ' peak
- good agreement in all mass windows
- (different processes, different μ^{\pm} angular/momentum distributions)

G. Grzelak (UW)

23-Oct-2019 17 / 24

Control plots, after muon corrections: |t|

- good agreement
- Magenta: elastic contribution, Yellow: p-dissociation, Red: BH

• assuming
$$f_{p-diss} = 0.25$$
 (no fit)

G. Grzelak (UW)

23-Oct-2019 18 / 24

• □ > • □ > • □ > •

Control plots, after muon corrections: |t| in mass bins

- Magenta: elastic contribution, Yellow: p-dissociation, Red: BH
- assuming $f_{p-diss} = 0.25$ (no fit)

G. Grzelak (UW)

Control plots, after muon corrections: helicity: $cos(\theta_h)$

- Magenta: elastic contribution, Yellow: p-dissociation, Red: BH
- SCHC: s-channel helicity is conserved for VM !

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

2-prong: helicity on generator level (before cuts)

- $\frac{1}{N} \frac{dN}{dcos\theta_h} = \frac{3}{8} (1 + r_{00}^{04} + (1 3r_{00}^{04})cos^2\theta_h)$
- for J/ψ and $\psi(2S)$ (el and pd) r_{00}^{04} is 0.0 within errors (as for SCHC)

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

23-Oct-2019 21 / 24

Control plots, after muon corrections: 4-prong W

- good agreement, no background
- Magenta: elastic contribution, Yellow: p-dissociation
- assuming $f_{p-diss} = 0.25$ (no fit)

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

Control plots, after muon corrections: 4-prong |t|

- good agreement, no background
- Magenta: elastic contribution, Yellow: p-dissociation
- assuming $f_{p-diss} = 0.25$ (no fit)

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

- new muon correction scheme (weighted corrections) was developed
- works very well (for full FLT-SLT-TLT-REC chain)
- tested on 2-prong and 4-prongs samples
- no DATA/MC discrepancy found
- ready to calculate selection acceptance and efficiency
- deliver $\psi' / J/\psi$ ratio R
- micro-DST approach very useful for fast systematic evaluation