Calibrating the ATLAS Muon Spectrometer for a Search for Charged Stable Massive Particles

Summary of the master's thesis at the LMU Munich

Martin Habedank

analysers/ coordinators: Sascha Mehlhase, Jochen J. Heinrich, Michael Adersberger, Shlomit Tarem, Troels Petersen, Dorothee Schaile

28 October 2019

Motivation

- many questions left open by the SM: Dark matter, Hierarchy problem, ...
- → various theories extending the SM: Universal Extra Dimensions, Supersymmetry, ...
- → often predict additional particles, among others charged stable massive particles (charged SMPs)
- → can be searched for with ATLAS at the LHC

Charged SMPs

- criteria
 - stable
 - massive
 - charged

search at ATLAS (SUSY→RPV/LL→SMP):

- β measurement
 - from dE/dx in pixel detector
 - from time-of-flight (ToF) in tile calorimeter and muon spectrometer
- benchmark models (SUSY)
 - R-hadrons
 - staus
 - charginos
- publications in 2015, 2016, 2019

Need for a dedicated reconstruction algorithm: MuGirlStau

- signature of charged SMPs similar to muon, but with delayed hits
- → reduced reconstruction efficiency for nominal muon reconstruction algorithms
- → need for dedicated reconstr. algorithm: MuGirlStau (R20.7), MuGirlLowBeta (R21)

MC sample: directly produced stable staus (GMSB) – and charginos (mAMSB)

The ATLAS Muon Spectrometer

Cross-sectional view of the muon spectrometer

Overall layout of an MDT chamber

What is different in MuGirlStau?

Nominal reconstruction	Dedicated reconstruction: $MuGIRLSTAU$
consider one bunch crossing only	consider following bunch crossing as well
eta=1 for all particles	eta as free parameter, seeded by time-of-
	flight measurement

Cross section of an MDT tube

[Eur.Phys.J. C62 (2009) 281]

Correct and incorrect segment reconstruction

What is different in MuGirlStau?, part II

Nominal reconstruction	Dedicated reconstruction: $MUGIRLSTAU$
consider one bunch crossing only	consider following bunch crossing as well
eta=1 for all particles	eta as free parameter, seeded by time-of-
	flight measurement
mostly outside-in approach	inside-out approach

New dedicated reconstruction algorithm: MuGirlLowBeta

• several reasons for rewriting dedicated reconstruction algorithm from scratch, most importantly reconstruction efficiency:

$$ar{arepsilon}({\sf data,\ R20.7}) = 80.7\%$$
 $$\widehat{arepsilon}({\sf data,\ R21}) = 96.7\%$

New calibration of the ATLAS MS

- dedicated reconstruction algorithm needs thorough timing calibration
- new version of algorithm renders previous calibration outdated
- → new calibration needed
 - calibration based on muons with $Z \to \mu\mu$ selection ($t_0 = 0$ ns, $\beta = 1$)
 - using *pp*-collision data in from 2015–2018 (128.3 fb⁻¹)
 - calibrated systems in muon spectrometer: Resistive-plate chambers (RPCs), Monitored Drift Tubes (MDTs)
 - calibrated quantities: t_0 , β

$$t_0 = \mathsf{ToF} - rac{d}{c}$$

Uncalibrated β distributions

 \bullet β distributions: supposed to be Gaussian, centered at 1 with as small as possible width

Calibration steps

multiple calibration steps taken that improve timing resolution:

- Drift-time calibration: correct erroneous calculation of drift times in MDTs
- Propagation-time calibration: correct erroneous calculation of propagation times in strips and wires
- 3. Run-wise calibration: correct for run-wise effects
- Element-wise calibration: correct for element-wise effects
- Pull correction: adjust measurement uncertainties

Result of data calibration

ullet improvement in eta by the different calibration steps and final result

Simulation treatment

- simulated events used for setting exclusion limits on benchmark models
- \rightarrow MC needs to be calibrated as well
- → using smearing and unfolding techniques

MDTs

RPCs

Summary

- charged stable massive particles: predicted in many theories beyond the SM
- searched with ATLAS: ionisation-energy and time-of-flight measurements
- needs dedicated reconstruction algorithm and thorough timing calibration of MS
- timing calibration yields large improvement in β resolution
- MC treatment using smearing and unfolding techniques

Back-up

Another reason for a new dedicated reconstruction algorithm: MuGirlLowBeta

ullet another reason for rewriting dedicated reconstruction algorithm from scratch: wrongly computed distance from IP in MuGIRLSTAU, resulting in asymmetric tails in timing measurements

MuGirlLowBeta (new)

Missing MDT hits in the barrel region of the ATLAS side C

ullet in the course of this work, bug in MuGirlLowBeta found: MDT hits missing on ATLAS side C in the barrel region:

• has small but non-negligible effect on calibration

Uncalibrated t_0 distributions

• t₀ distributions: supposed to be Gaussian, centered at 0 ns with as small as possible width

spiky structure for RPCs: result of RPC readout timing-granularity

RPC readout timing-granularity

- RPCs part of trigger system
- ightarrow read out every 3.125 ns
- ightarrow measurements of discrete peaks with a temporal distance of 3.125 ns
- \bullet adding propagation time to t_0 anew: timing-granularity of the RPC readout visible

Calibration step I: Drift-time calibration

- for MDTs only
- to correct distortions caused by drift-time calculation and non-linear space—drift-time—relation of the drift gas

Calibration step II: Propagation-time calibration

- to correct distortions caused by erroneously calculated propagation times
- uncalibrated distributions:

RPC η -strips similar for RPC ϕ -strips, but in z instead of ϕ

Calibration step III: Run-wise calibration

• to correct run-wise effects

fitting procedure to obtain mean of t_0 per run, for MDTs

mean of t_0 per run in 2017

Calibration step IV: Element-wise calibration

- to correct element-wise effects
- multi-fit procedure to obtain mean of t_0 per element

fitting procedure to obtain mean of t_0 per run, for a randomly chosen RPC η -strip

fraction of hits a certain fit method is chosen for or that is rejected

Calibration step V: Pull correction

• to adjust measurement uncertainties

$$p := \frac{1 - \beta_i^{-1}}{\sigma_{\beta_i^{-1}}}$$

Simulation treatment: unfolding

- attempt to achieve better agreement between data and simulation by chamber-wise treatment:
 - smearing for chambers overestimating β resolution
 - unfolding for chamber underestimating β resolution:

Response matrix

Unfolding matrix

Simulation treatment: result for systems in t_0

• result after full calibration chain and MC treatment:

Simulation treatment: result for combined systems

• combined result for MS (MDTs+RPCs) after full calibration chain and MC treatment:

