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Physics of Charged Cosmic Rays

1912: Discovery of Cosmic Rays 1932: Discovery of positron

1947: Discovery of pions

Discoveries of 
1936: Muon (μ)
1938: 1015 eV CR 
1949: Kaon (K)
1949: Lambda (Λ)
1952: Xi (Ξ)
1953: Sigma (Σ)

p µ
e

C.D. Anderson
V. Hess

C. Powell
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Cosmic Rays with energies of 100 Million TeV have been observed.



Requires a magnetic detector in space.

HeHe
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The detectors were constructed in Europe and Asia and 
assembled at CERN, Geneva

AMS is an International Collaboration
It took 650 physicists and engineers 17 years to build AMS
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AMS on ISS provides long 
term (20 years) precision 

measurements of charged 
cosmic rays.

Charged cosmic rays have mass. 
They are absorbed by 100 km of 

Earth’s atmosphere (10m of water).

To measure their charge and 
momentum requires a magnetic 

spectrometer in space.  

The physics of AMS on the Space Station: 
Study of Charged Cosmic Rays
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“Its time we face reality,

my friends….

Weʼre not exactly 

rocket scientists.”
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The AMS-01 Detector
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Tracker

Approval: April 1995, Assembly: December 1997, Flight: 10 days in June 1998
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65m x 4m x 3m

7.5 tons
Silicon layer

7 Silicon layers

Silicon layer

TRD

TOF 1, 2

TOF 3, 4

RICH

ECAL 

Magnet
~1500 Gauss

300,000 electronic channels
650 processors

Radiators

11,000 Photo Sensors
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5-6

Transition Radiation 
Detector (TRD)

Silicon Tracker

Electromagnetic
Calorimeter (ECAL) 

Ring Imaging 
Cherenkov (RICH) 

Time of Flight
Detector (TOF)

300,000 electronic channels,
650 fast microprocessors

5m x 4m x 3m
7.5 tons

Magnet

AMS is a space version of a precision detector 
used in accelerators

10



Transition Radiation Detector (TRD) built by RWTH: 
identifies Positrons and Electrons, rejects protons to <1 in 1000 

5248 
tubes
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Lifetime = 5000g / 0.47g/d è 2035 
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Precision – CAT scan using vertices

Vertex:
Primary 
particle

Secondary 
particles 12
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Silicon Tracker

200,000 channels 

Coordinate resolution 5-10 microns
Measure momentum P and nuclear charge Z
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Inner tracker alignment
(< 1 micron)

monitored with IR lasers

Tracker stable to 2 microns over eight years

Outer tracker stable to 2 micron over 8 years
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Maximal Detectable Rigidity – 2TV for Z=1 particles



Measurement of Nuclear Charge and its Velocity to 1/1000

Particle

Ring Imaging CHerenkov (RICH)

Θ

Intensity ⇒ Z2

Q⇒ V

10,880 
photosensors

Aerogel
NaF

15

10,880 photosensors



e±Lead foil
(1mm)

Electromagnetic Calorimeter (ECAL) to measure
the highest energy electrons in space with ~2% accuracy

One of 1296 cells (9x9 mm2)

A precision, 17 X0, TeV, 3-dimensional measurement of the 
directions and energies of light rays and electrons

Fibers
(f1mm)

16



AMS is a unique magnetic spectrometer in space

Cosmic rays are defined by: 
• Energy (E in units of GeV) 
• Rigidity (R=p/Z in units of GV)
• Charge (Z - location on the periodic table: H Z=1, He Z=2, …)

Matter Antimatter

17



Calibration at CERN
with different particles at different energies

AMS
27 km

7 km

LHC CERN

FranceSwitzerland

Italy

the Alps
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Total weight:    2008 t
AMS weight:        7.5 t

May 16, 2011, 08:56 AM
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AMS installed on the ISS 
Truss at 5:15 CDT and 
taking data since 9:35 CDT
May 19, 2011

20



POCC at CERN in control of AMS since 19 June 2011
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Payload Operations 
and Integration Center,
MSFC, Huntsville, AL

Mission Control Center,
JSC, Houston, TX
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AMS on ISS

Starlight

WSGT

CERN GRID
Internet

NASA Internet

MSFC
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AMS Operations

White Sands Ground 
Terminal, NM

AMS Computers 
at MSFC, AL

AMS Payload Operations Control and 
Science Operations Centers 

(POCC, SOC) at CERN

AMS TDRS SatellitesAstronaut at ISS AMS Laptop 

Ku-Band
High Rate (down):
Events <10Mbit/s> 

S-Band
Low Rate (up & down):
Commanding: 1 Kbit/s
Monitoring: 30 Kbit/s

Flight Operations

Ground Operations
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In 8 years,
over 145 billion 

charged cosmic rays 
have been measured by AMS

25

AMS installed on the ISS 
and taking data since 

9:35 CDT on May 19, 2011



Measurements above 
test beam rigidity 

The accuracy of the rigidity scale is found to be 0.033 
TV−1, limited mostly by available positron statistics.  

26

Unique properties of AMS:

Accuracy of 
the rigidity scale 



Positrons, 
antiprotons

from Dark Matter

Dark Matter

Dark Matter
Electrons

Interstellar 
Medium

Protons, 
Helium, …

Supernovae

AMS Physics Results:
on the Origins of Cosmic Positrons

Positrons, 
antiprotons
from Collisions

Positrons
from Pulsars

New Astrophysical Sources: Pulsars, …
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Cosmic Electron and Positron spectra before AMS 
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The data have created many theoretical speculations.
Standard assumption was (PDG):

Flux = C · (Energy)g g is the Spectral Index
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Comparison with other recent measurements
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Towards understanding the origin of cosmic ray positrons

1.9 million 
positrons

30



(a) An excess a𝐛𝐨𝐯𝐞
𝑬𝟎 = 𝟐𝟓. 𝟐 ± 𝟏. 𝟖GeV

(b) A sharp drop-off at 
𝑬𝟎 = 𝟐𝟖𝟒0𝟔𝟒2𝟗𝟏 GeV     

Fits of the data to 

25.2 GeV 284 GeV 
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Φ56 𝐸 = 8
𝐶𝑬:, 𝐸 ≤ 𝐸=;
𝐶𝑬: ⁄𝐸 𝐸= @A, 𝐸 > 𝐸=.



The Origin of Positrons

?

Positrons from 
Cosmic Ray Collisions

Low energy positrons mostly come from cosmic ray collisions

AMS 1.9 million positrons 

Model based on positrons from 
cosmic ray collisions.
Astrophysical Journal 729, 106 (2011)
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The positron flux is the sum of low-energy part from cosmic ray collisions plus 
a high-energy part from a new source or dark matter both with a cutoff energy ES.

Energy [GeV]

Positrons from
Cosmic Ray 
Collisions

Positrons
from

New Source
or

Dark Matter

Collisions New Source or Dark Matter
!"# $ = $&

$'& ()($' $+⁄ ).)	+	(1 $' $&⁄ .1234(−$' $1⁄ )Es

• AMS positrons
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At high energies positrons come from 
dark matter or new astrophysical sources with a cutoff energy Es. 

Positrons
from

New Source
or

Dark Matter

!"# $ = $&
$'& 	)* $' $&⁄ ,*-./(−$' $*⁄ )

–180The cutoff energy Es = 810+310 GeV   
is established with a confidence of 
more than 99.99%. 

Es

AMS positrons (data-collision term)
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Magnetic field lines

Light raysRotation axis

Positrons from Pulsars

1. Pulsars produce and accelerate positrons to high energies 
without a sharp cutoff.  

2. Pulsars do not produce antiprotons.
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AMS Physics Results: 
Antiproton data show a similar trend as positrons.

Antiprotons cannot come from pulsars.  
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Dark Matter

Collision of Dark Matter produces positrons and antiprotons.
Dark Matter particle have mass M and they move slowly. 

Before collision the total energy ≈ 2M.  

The conservation of energy and momentum requires that 
the positron or antiproton energy must be smaller than M. 

So, there is a sharp cutoff in the spectra at M. 

Dark Matter

Dark Matter

Electrons, Protons

Positrons, Antiprotons

37



Positrons and Dark Matter 2018
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Data 2018

Dark matter Model
(Mass = 1.2 TeV)

cosmic ray collisions

+  cosmic ray collisions
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Dark matter Model

dark matter modelbased on 
Projection to 2024

Positrons and Dark Matter by 2028
AMS will provide the definitive answer on the nature of dark matter 

+  cosmic ray collisions
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2028



AMS 28.1 million electrons

Electrons from cosmic ray collisions

AMS Physics Results:
The Origins of Cosmic Electrons

The contribution from cosmic ray collisions is negligible

40



A significant 

excess at 

!" = $%. '().%*).$ GeV

Fit to the data 7σ effect

42.1 GeV

29

Φ,- . = /0!
1, . ≤ .4;

0!1 ⁄. .4 78, . > .4.

Δ1= 0.094�0.014

42.1 GeV

41

Origins of Cosmic Electrons
7σ effect

Δ:= 0.094±0.014

Electrons from 
cosmic ray collisions



The electron flux can be described by two power law functions: 

!"# $ = &($) )* $+ $*⁄ -* + )/ $+ $/⁄ -/

Electrons from collisions

bPower 
law a Power 

law
Solar &

low-energy

What is the origin of power law a and power law b?

• AMS electrons

42
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No source term in the electron spectrum 

Es<1.9 TeV
excluded at 5σ

Φ5D 𝐸 = 𝐶𝑆 ⁄𝐸 41. 61 GeV :𝑺 exp ⁄−𝐸 𝐸P



Electrons 

Positrons

Electrons originate from different sources than positrons;
the electron spectrum comes from two power law contributions.  

The positron flux is the sum of low-energy part from cosmic ray collisions plus 
a high-energy part from a new source or dark matter both with a cutoff energy ES.

AMS Physics Results: 

44
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AMS data 2018

based on data trend
Projection to 2024

Physics of cosmic electrons to 2028
What is the origin of power law a and power law b?
Is there a cutoff for electrons at higher energies? 
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2028
2019



Positron Anisotropy and Dark Matter

C1 is the dipole moment

The anisotropy in galactic coordinates

Astrophysical point sources like pulsars will imprint a higher 
anisotropy on the arrival directions of energetic positrons 

than a smooth dark matter halo.

Currently at 95% C.L.: positrons: δ < 0.019
for 16<E<350 electrons:  δ < 0.005 46
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Precision Study of Cosmic Nuclei through the lifetime of ISS
Accuracy of ~ 1%, Energy range 500 to 3,000,000 MeV

H

He

Li
Be

B
C

N
O

F
Ne

Na
Mg

Al
Si

P
S

Cl Ar
K

Ca
Sc Ti

V
Cr Fe

Ni
Mn

Zn
Co

Exploring an uncharted region from 2011 to 2028 and beyond
covering close to two 11-year solar cycles 

Current data (2011 to 2019)
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Primary elements (H, He, C, ..., Fe) are 
produced during the lifetime of stars. 

They are accelerated by 
the explosion of stars (supernovae).

Supernovae

Nuclei fusion 
in stars

Oxygen

Helium

Carbon

Proton

Primary Cosmic Rays

49
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Latest results – 1 billion protons
AMS Measurement of the proton spectrum
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The proton flux cannot be described by the traditional theory

AMS Physics Results:
Proton Flux

Unexpected

⦁ AMS
300 million protons

Rigidity [GV] = Momentum  
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Before AMS there were many results on Primary Cosmic Rays 
(Helium, Carbon, Oxygen)

from balloon and satellite experiments 

Helium
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AMS Physics Results:
Surprisingly, above 60 GV, the primary cosmic rays 

have identical rigidity (P/Z) dependence. 

AMS
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Oxygen

Helium

Carbon

Interstellar 
medium

LithiumBeryllium 
Boron

Secondary cosmic nuclei 
(Li, Be, B, …) 

are produced by the collision of
primary cosmic rays and 

interstellar medium

Supernova

Proton

Secondary Cosmic Rays

54
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AMS Physics Results:
Secondary cosmic rays Li, Be, and B also have identical 
rigidity dependence but they are different from primaries
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Oxygen

Helium

Carbon

Interstellar 
medium

LithiumBeryllium 
Boron

Supernova

Proton

Secondary-to-Primary Ratios

The ratio of secondary flux 
to primary flux directly 

measures the amount and 
properties of 

interstellar medium.

Before AMS, the B/C ratio 
was assumed to be ∝ R Δ

with Δ a constant
for R > 60GV.
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AMS Physics Results:
The Secondary/Primary Ratios ≠ kRΔ

Δ is not a constant

Δ[200-3300]GV – Δ[60-200]GV = 0.13 ± 0.03 
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AMS Helium Isotope Ratio

Helium (3He, 4He) interaction cross sections 
with the interstellar medium (p, He) are 

significantly smaller than those 
of heavier nuclei (Li, Be, B, C, N, O, ...). 

Therefore, helium travels larger distances, 
probing a larger Galactic volume. 

Explicitly, the 3He/4He ratio probes the properties 
of diffusion at larger distances. 
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AMS Helium Isotope Ratio
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AMS Helium Isotope Ratio – Spectral Index

10 210 310

R [GV]
0.4−

0.2−

0

0.2

Sp
ec

tra
l In

de
x

He4He/3

B/O

61



Primary elements (He, C, ..., Fe) 
are produced during the lifetime of stars and 

then accelerated by 
the explosion of stars (supernovae)

Ni and Zn are produced 
during the explosion of stars.

Are heavier elements  Ni and Zn different from He, C, … Fe?
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Primary

Secondary

How many classes of cosmic rays exist in the universe?
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Flux Ratios Ne/O, Mg/O, Si/O, and S/O

RΔ1

RΔ2

Ne, Mg, Si

S

O

Preliminary data, please 
refer to the forthcoming 
publication in PRL   

Δ2≈ Δ1≈-0.035

64



Oxygen

Helium

Carbon

Interstellar 
medium

Lithium
Beryllium 

Boron

Supernova

Carbon

Oxygen
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The measured spectra of Cosmic Rays break at ~200 GV. 
Is there a break for all the elements? Why?

Helium
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AMS

10Be

10B

How old are cosmic rays?

The measurements of radioactive Aluminum (Z=13), Chlorine (Z=17), 
and Manganese (Z=25) spectra will precisely establish the age of cosmic 

rays as they (like Be) are radioactive clocks.

10Be (Z=4) decays with a half-life 1.4×106 years  10Be ® 10B+e- +ve. 
Precision measurement of the rigidity dependence of Be/B ratio 

provides information on the age of cosmic rays
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Tesc = 16.5 -2.0+4.0MyearsTesc = 𝟏𝟔. 𝟓0𝟐.𝟎2𝟒.𝟎 Myears
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AMS is orders of 
magnitude more sensitive 
than previous experiments
on balloons and satellitesAMS is orders of 

magnitude more sensitive 
than previous experiments
on balloons and satellites

Complex anti-matter 
The Big Bang origin of the Universe requires 

matter and antimatter
to be equally abundant 

at the very hot beginningAnti-Matter Universe
Universe
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Search for Baryogenesis

LHC-b, ATLAS,CMS

No explanation found for the absence of antimatter.
No reason why antimatter should not exist.

LHC
CERN

FranceSwitzerland

Italy

the Alps

Proton has finite lifetime New symmetry breaking

Super Kamiokande
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13,000 photomultipliers



Z

X

Y

Date: 2017-173:06:11:40

Observation of heavy antimatter
anti-4He track in Y-Z bending plane

anti-
4 He tra

ck in X-Z non-bending plane

Cherenkov cone in RICH (X-Y plane)
4He:  Mass   =    3.73 GeV/c2

Charge  =  +2

Charge = −2.05 ± 0.05
Mass =    3.81 ± 0.29 GeV/c2
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70

Complex Antimatter

AMS

The rate in AMS of antihelium candidates is less 
than 1 in 100 million helium.  At this extremely low 
rate, more data (through the lifetime of the ISS) is 

required to further check the origin of these events.



Solar Physics over an 11-year Solar Cycle: 2011 - 2028
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Identical daily time variation of the p, He fluxes
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Solar physics over a complete 11-year solar cycle

So far, the maximum 
and minimum fluxes 

differ by a factor of ~3

What is the largest difference over a 
solar cycle?
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Carbon and Oxygen

The maximum and minimum fluxes differ by a factor of ~3
What is the largest difference over a solar cycle? 75



All AMS Publications in Physical Review Letters
These results do not agree with previous measurements.

Explanation of these results require new comprehensive theory.

1) M. Aguilar et. al., Phys. Rev. Lett. 110 (2013) 141102. Editor’s Suggestion 
Viewpoint in Physics, Highlight of the Year 2013.

2) L. Accardo et al., Phys. Rev. Lett. 113 (2014) 121101. Editor’s Suggestion
3) M. Aguilar et. al., Phys. Rev. Lett. 113 (2014) 121102. Editor’s Suggestion
4) M. Aguilar et. al., Phys. Rev. Lett. 113 (2014) 221102.
5) M. Aguilar et. al., Phys. Rev. Lett. 114 (2015) 171103. Editor’s Suggestion 
6) M. Aguilar et. al., Phys. Rev. Lett. 115 (2015) 211101. Editor’s Suggestion
7) M. Aguilar et. al., Phys. Rev. Lett. 117 (2016) 091103. 
8) M. Aguilar et. al., Phys. Rev. Lett. 117 (2016) 231102. Editor’s Suggestion
9) M. Aguilar et. al., Phys. Rev. Lett. 119 (2017) 251101.
10) M. Aguilar et. al., Phys. Rev. Lett. 120 (2018) 021101. Editor’s Suggestion 
11) M. Aguilar et. al., Phys. Rev. Lett. 121 (2018) 051101. 
12) M. Aguilar et. al., Phys. Rev. Lett. 121 (2018) 051102. Editor’s Suggestion
13) M. Aguilar et. al., Phys. Rev. Lett. 121 (2018) 051103. 
14) M. Aguilar et. al., Phys. Rev. Lett. 122 (2019) 041102. Editor’s Suggestion
15) M. Aguilar et. al., Phys. Rev. Lett. 122 (2019) 101101.
16) M. Aguilar et. al.,  Phys. Rev. Lett. 123 (2019) 181102. Editor’s Suggestion

17) M. Aguilar et. al., To be submitted to Phys. Rev. Lett., 
“Rigidity Dependence of Ne, Mg, and Si Cosmic Rays”
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Aivazovsky: The 9th wave (1850) 

Theorists now

New precise CR data

Current state: a nightmare

New CR data
New CR data

New CR data

New CR data

… .. ….

I. Moskalenko, APS meeting
Washington, Jan. 29, 2017
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The UTTPS cooling system is made possible through the strong support of 
NASA, DOE, MIT           , DLR          , ASI           , CSA         , and Taiwan

Colonel 
Luca Parmitano
Italian Air Force

Colonel 
Andrew R. Morgan 

U.S. Army

Colonel 
Jeremy Hansen

Royal Canadian Air Force

Captain 
Christopher Cassidy 

U.S. Navy

After 8 years, the cooling system for the silicon tracker requires an 
upgrade, known as the UTTPS. 

To install it, four EVAs were performed by two astronauts. 
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Welcome to the digital edition of the January/February 2020 issue of 
CERN Courier.

On the cover of this issue, NASA astronaut Drew Morgan is photographed 
400 km above Earth’s surface installing a new coolant system for the Alpha 
Magnetic Spectrometer (AMS) during a crucial spacewalk on 2 December. 
Masterminded by charm–quark co-discoverer Sam Ting of MIT, and 
assembled and overseen by an international team at CERN, AMS has 
been attached to the International Space Station since 2011. Its various 
subdetectors, which include a silicon tracker embedded in a 0.15 T magnet, 
have so far clocked up almost 150 billion charged cosmic rays with energies 
up to the multi-TeV range and produced results that contradict conventional 
understanding. The new coolant system (which was delivered by an Antares 
rocket on 2 November) will extend the lifetime of AMS until the end of the 
decade, allowing more conclusive statements to be made about the origin 
of the unexpected observations. A full report on the unprecedented AMS 
intervention – and a taste of the experiment’s latest results – will appear on 
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The accuracy and characteristics of the AMS data on many different types of cosmic 
rays require the development of a comprehensive model of cosmic rays.

AMS will continue to collect and analyze data for the lifetime of the Space Station 
because whenever a precision instrument such as AMS is used to explore the 

unknown,  new and exciting discoveries  can be expected


