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This note is about the physics of 4-forms on a 4-dimensional manifold, and
their use to address the cosmological constant problem and the Higgs Hierarchy
problem. This note do not pretend to be complete nor correct, and represent
just the partial understanding of the author at this moment.

1 The “dynamics” of 4-forms

1.1 Basics and conventions

Consider a differential manifold M , with dimM = 4, which will be our space-
time. We define on M a 3-form gauge potential A3, which in component reads

A3 =
1

3!
Aµνρdx

µ ∧ dxν ∧ dxρ (1)

and which has a gauge symmetry

A3 → A3 + dΛ2. (2)

We then define a 4-form field strength as

F4 = dA3 (3)

which in components reads

F4 =
1

4!
Fµνρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ (4a)

Fµνρσ = ∂µAνρσ − ∂σAµνρ + ∂ρAσµν − ∂νAρσµ (4b)

and notice immediately that F4 is invariant under (2), as d2 = 0
We would like to make this field dynamical, so we declare an action for this,

which is just an analog of Maxwell action but for a higher form-field.

Skin =
1

2

∫
d4x F ∧ ?F (5)

which in component reads

Skin =
1

2 · 4!

∫
d4x
√
−gFµνρσFµνρσ (6)
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1.2 Equation of motion

We can set to zero the variation of the action (5) with respect to A3 and compute
the equations of motion. They read

Dµ

(√
−gFµνρσ

)
= 0 (7)

This can be shown to be equivalent to

∂µ
(√
−gFµνρσ

)
= 0 (8)

Now we solve this equation. We notice that since F is completely antisymmetric,
it has off-shell a single degree of freedom. We can therefore write

Fµνρσ =
1√
−g

f(x)εµνρσ (9)

and the equation of motion will be a differential equation for f(x):

εµνρσ∂µf(x) = 0 . (10)

Equation (10) can be contracted with an epsilon symbol on both sides, giving

∂µf(x) = 0 , (11)

which implies that f(x) is constant over spacetime. It can be shown that this
is the only solution. This in turn implies that

Fµνρσ(x) =
c√
−g

εµνρσ (12)

and lowering the indices with the metric we get that

Fµνρσ(x) = c
√
−gεµνρσ (13)

Introducing the Levi-Civita tensors

Eµνρσ =
1√
−g

εµνρσ (14a)

Eµνρσ =
√
−gεµνρσ (14b)

we see that we can write in a more compact way

Fµνρσ(x) = cEµνρσ (15a)

Fµνρσ(x) = cEµνρσ (15b)

In this section we have learned a first important fact: The equation of motion
of F4 imply that F4 is simply proportional to the determinant of the metric. It
has zero propagating degrees of freedom on-shell.

This fact is commonly referred to as F4 is constant, in the literature.
Up to what said so far, the constant c can be any real number. We will see

later that only some specific values of c are allowed.
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1.3 Contribution of F to the cosmological constant

So far we considered the dynamics of the 4-form F4 in a curved but static
gravitational background. Now we will couple this field to gravity, namely we
consider an action given by the Einstein-Hilbert action plus the action Skin of
above. This is

S =

∫
d4x
√
−g
(

1

2κ4
R− Λ0 −

1

2 · 4!
FµνρσF

µνρσ

)
+ SGHY + Sb . (16)

The terms SGHY and Sb are respectively the Gibbons-Hawking-York term, and
a boundary term for F4. They must be added for consistency, but they do not
affect the equations of motion and play no role in this discussion. (However
they are crucial for the action to be well-defined and they do affect the physics
in other circumstances).

The equation of motion of F4 stay the same, while the equation of motion
of the metric will be of course given by Einstein’s field equation. Now we will
integrate out F4 at tree level. Namely we take its equation of motion, we solve
it, and we plug it back in the action, finding a new effective action for the metric.
Notice that since

FµνρσF
µνρσ = c2EµνρσEµνρσ = −24c2 . (17)

the new effective action will be

S =

∫
d4x
√
−g
(

1

2κ4
R− Λeff

)
(18)

with

Λeff = Λ0 −
c2

2
(19)

Here the crucial point is the following. The value of the cosmological constant
that we measure is Λeff . There is no way to measure independently Λ0 and c.
Therefore, it is possible that Λ0 is large and c is also large and close to Λ,
such that a big cancellation happens. If there were a nice mechanism to explain
why c and Λ0 take a similar value, this would resolve the cosmological constant
problem.

This fact was first pointed out by Hawking in [1]. Note also that at this
point we said nothing about the possible values that c can take, so in principle
one could think that we can set to zero Λeff by sufficiently tuning c somehow.

2 Coupling to membranes

In the discussion so far we neglected a crucial ingredient. A 3-form gauge
potential couples naturally to a membrane!

A membrane by itself will have an action given by

Sbrane = −T
∫
d3ξ
√
−γ (20)
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Sint = e

∫
W

Aµνρ
∂xµ

∂ξa
∂xν

∂ξb
∂xρ

∂ξc
εabc (21)

Let us compute now the equations of motion of F4 in the presence of the
membrane. To do that we need to compute the variation with respect of A of
the action

S =

∫
F ∧ ?F + Sint (22)

We see that Skin is an integral over 4d space, while Sint is an integral over the
brane worldvolume. By a standard trick we can rewrite

Sint = e

∫
d4x

∫
d3ξδ(4)(x− x(ξ)) Aµνρ

∂xµ

∂ξa
∂xν

∂ξb
∂xρ

∂ξc
εabc (23)

so now the equation of motion will read

∂µ (
√
gFµνρσ) = −e

∫
d3ξδ(4)(x− x(ξ))

∂xν

∂ξa
∂xρ

∂ξb
∂xσ

∂ξc
εabc . (24)

From this we learn a crucial fact: c is constant on both sides of the membrane,
but the values will be different. Let us compute the amount of the change of
c. Suppose that we are in Minkowski spacetime now, and we have a brane
at x3 = 0, meaning the brane spans completely x0, x1, x2. Let us evaluate this
expression. We have 3 open indices in the left and in the right, so let us evaluate
it for µ = 3, ν = 0, ρ = 1, σ = 2. We get to

∂3c = −e
∫
d3ξδ4(x− x(ξ))

∂x0

∂ξa
∂x1

∂ξb
∂x2

∂ξc
εabc (25)

Now in order to do the derivatives in the RHS we need to use 3 out of the 4
deltas to set x as a function of ξ.∫

d3x∂3c = −e
∫
d3ξδ(x3 − x3(ξ))

∂x0(ξ)

∂ξa
∂x1(ξ)

∂ξb
∂x2(ξ)

∂ξc
εabc

= −e
∫
d3ξδ(x3 − x3(ξ))δ0

aδ
1
b δ

2
c ε
abc =

= −e
∫
d3ξδ(x3 − x3(ξ))

(26)

From this we find

vol ·
∫ ε

−ε
dx3∂3c = −e

∫
d3ξ

∫ ε

−ε
dx3δ(x3 − x3(ξ)) =

= −e
∫
d3ξ = −e · vol

(27)

So we have
c(ε)− c(−ε) = −e (28)

Taking now the limit for ε→ 0 we find that

∆c = e (29)

This computation was done under two assumptions
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1. Minkowski background

2. Brane at z = 0

It can be shown that the result is the same regardless of these hypothesis, namely
∆c = ne also in curved backgrounds.

3 4-form quantization

Up to now we have said nothing at all about the value of the constant c. We
have only said that it is constant in any region of space delimitated by a brane
(domain wall) and jumps in a discrete way when such defect is crossed. However,
it was found that the value of c is quantized [2].

c = en, n ∈ Z (30)

This must be true if the 4d theory comes as an effective theory from Strings.
Infact in String Theory both RR-forms and their magnetic duals obey all a
Generalized Dirac quantization for forms.

In particolar, for every RR field-strength Fp it must happen that∫
Σp

Fp = const · n, n ∈ Z (31)

In general one can ask why we needs such quantization condition. For forms
Fp with p > 0 this is equivalent to a consistency condition on the (p− 2)brane
amplitudes. However the case of F0 is more tricky as it not clear what is a (−2)
brane. Let us postpone this discussion, and assume for the moment that (31)
holds true also for p = 0. We then would consider

F0 = ?F4 = c (32)

and 0-dimensional cycles are just points. So we get∫
Σ0

F0 = F0|pt = const · n (33)

where with F0|pt we denoted F0 evaluated at a point. A short computation
can be done to find the value of the constant, and we get to

c = en, n ∈ Z (34)

4 Membrane nucleation

In the quantum theory the configurations of fixed n are unstable, and they can
tunnel into each other. A phenomenon called membrane nucleation can occurr,
in which a membrane bubble appears, and start immediately expanding at the
speed of light. This is nothing exotic, it is simply the Schwinger effect. The
membrane that appeared now separates the old region with c = ne from a
new region with c = (n − 1)e inside. The decrease of the energy of the field
configuration in the new region with c = (n − 1)e is expected as the ”missing

5



energy” is actually just stored in the membrane boundary. The tunneling rates
among various solutions have been studied.

In principle there are two possibilities for transitions

1. Transition that decrease n. They have a very large rate.

2. Transition that increase n. They still are possible due to a mechanism
called gravitational instanton, but with an extremely smaller rate.

Consider a initial situation in which we have a patch of the Universe with
a given c = ne. Then a chain of transition decreasing n in steps will happen,
therefore reducing the effective cosmological constant step by step. This cascade
will stop when we get to zero effective cosmological constant, or negative one.

Consider now a case in which we have many causally disconnected patches
Ui in the Universe, in each one of them, the initial value of Λ0 is different,
say Λ0i, and in each one of them there is this cascade process of lowering the
cosmological constant. Then at the end of the process, in every patch there will
be a different value of Λeff,i. One can then argue by using anthropic arguments
that we live in the patch in which Λeff takes the measured value.

This process was initially introduced in [3] as a possible solution to the
cosmological constant problem. We see immediately three crucial points

1. In order to solve the cc problem in this way, a necessary condition is that
the “steps”-size should be comparable with Λeff . So they must be very
small. Therefore we need a very small e.

2. In order for our Universe to be metastable, the transition from our vacuum
into one with even lower cc (and possibly even AdS) must be longer then
the life of the universe.

3. It relies on anthropics.

5 Coupling to the Higgs

Now we consider coupling the 4-form to the Standard Model Higgs

VH = −
(
M2

0 +
y

24
εµνρσFµνρσ

)
|H|2 + λ|H|4 (35)

where M0 is a mass M0 ∼ MUV and y is a dimensionless coupling constant.
With this new term in the lagrangian, we now repeat the analysis of before.
The equation of motion for F and H will read

εµνρσ∂µ

(
c− y

2
h2
)

= −e
∫
d3ξδ4(x− x(ξ))

∂x0

∂ξa
∂x1

∂ξb
∂x2

∂ξc
εabc (36a)

�h = (−M2
0 + yc)h+ λh3 (36b)

let us consider the vacuum configuration

h = 〈h〉 = v , (37)

(where we took H = (0, h/
√

2)).
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From the analysis of above we now have if we cross a membrane(
∆c− y

2
∆h2

)
= e (38)

We further know that c = ne from the Dirac quantization condition. It

follows that also −y
2
h2 must be quantized in the same way. We get to(

c− y

2
h2
)

= ne, n ∈ Z (39)

5.1 Scanning at the same time Higgs and Λeff

From equations (38) and (39) together, we can see now that we can have the
following solutions

1. Before EW breaking.

c = en (40a)

〈v2〉 = 0 (40b)

2. After EW breaking

c =
yM2

0 + 2λen

y2 + 2λ
(41a)

〈v2〉 =
2(M2

0 + λen)

y2 + 2λ
(41b)

We can compute in each of these vacua what is the value of the effective
cosmological constant Λeff , and the Higgs mass parameter µ2

H (defined such
that the Higgs potential is VH = µ2

H |H|2 + λ|H|4)

1. Before EW breaking.

Λeff = Λ0 −
1

2
e2n2 (42a)

µ2
H = −M2

0 + yen (42b)

2. After EW breaking

Λeff = Λ0 −
λe2n2 + yM2

0 en−M4
0 /2

y2 + 2λ
(43a)

µ2
H =

2λ(yen−M2
0 )

y2 + 2λ
(43b)

We can now re-run the argument of membrane nucleation and the scan. We
see that dynamically both the cosmological constant relaxes and the Higgs mass
parameter relaxes, as the four-form field decharges itself via Schwinger effect.
The papers [4] and [5] independently pointed out at this mechanism. For the
solutions, they both rely on anthropics.
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6 Coupling to an axion

Consider now the case in which our 4-form is defined in a non-gravitational
background of Minkowski space, but it couples with an axion. We will see that
a nice phenomenon will occur, known as axion monodromy.

The axion is a real scalar field with a discrete shift symmetry

φ→ φ+mf, m ∈ Z (44)

where f is the axion decay constant. We take the lagrangian to be

L = −1

2
∂µφ∂

µφ− 1

2 · 4!
FµνρσF

µνρσ − µ

4!
φεµνρσFµνρσ (45)

Again we can compute the equation of motion for F and we can integrate
F out. We obtain a potential for φ of the form

V (φ) =
1

2
(c+ µφ)2 (46)

We notice that due to this potential the axion φ gets massive, with mass µ.
However, even if the axion is massive, the shift symmetry is not broken. One
can infact compensate the shift of the axion with a shift of the 4− form. Shift
at the same time {

φ→ φ+ nf, n ∈ Z
c→ c− nµf, n ∈ Z

(47)

and the whole potential stay invariant.
However, from the previous discussion we know that in two zones separated

by a n membranes we should have c→ c+ne. This poses a consistency condition

e = µf (48)

We found the following: If the coupling constant of the brane is equal to
the product of the axion mass and its decay constant, then the axion will retain
the shift symmetry even if it is massive. Therefore its mass is protected from
radiative corrections.

This is the starting point for models of axion monodromy inflation.
Some comments are due

1. The joint shift symmetry of the axion and the 4-form flux is a symmetry
of the lagrangian. However, it is spontaneusly broken by the choice of a
vacuum. (This is trivial, changing c will change the vacuum).

2. If the axion has a normal mass term (not coming from the 4-form) then
the shift symmetry is completely broken.
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