Alterrative tuning concepts & Scale-invariant gravity (agravity)

literative :

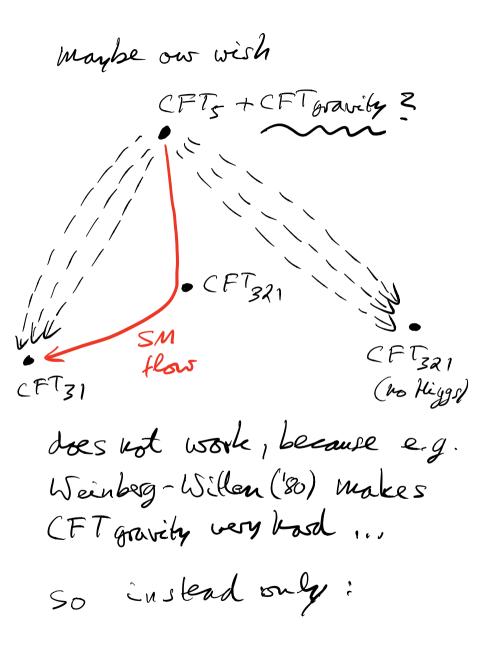
- Natural funing : 1305.6939
- Modified naturalness: 1303.7244

S ased to justify :

• Agravily: 1403.4226

(i) Natural tuning 2 standard options: • $\Delta m_h^2 - \frac{1}{h} - \frac{1}{h} + \frac{1}{h} - \frac{1}{h} + \frac{1}{h} + \frac{1}{h} + \frac{1}{h}$ $\sim ln\left(\frac{\Delta m_{t\tilde{t}}}{\bar{\mu}}\right) + tinite$ (technicolor, TeV-scale SUSY) e # - many vacua with varying Higgs ver + environmental selection (e.g. Gamow-resonance needed for 6C-cycle fusion in stars) explains/accommodates v ~ v_EW.

phase: e^{i2.S}eik^(S) = e^{il².S/4}
(-) 2D integrable quantum gravity
A critical string theory:


$$l^2 \sim G_N b^{4-d} \xrightarrow{G_N ln} \frac{R_{IR}}{b}$$

proporties:
on-shell: UV-soft
classical limit:
 $S_{VG} = -l^2 \int d^2 \sigma \sqrt{-det(2x_F + \partial_X x^{\mu} \partial^a X_N)}$
IR-limit: EFT with local
higher-dim. op.s
UV-limit: not a local EFT
off-shell

•
$$e^{i2\cdot\delta_{eik'}}$$
 exp. damped on-shell
in IR where $lm \leq >0$, but
has essential singularity off-
shell for $\leq =\infty$, $lm \leq <0$.

reconstruct L order by order:

$$L = \frac{1}{2} (\partial \varphi)^2 - \frac{m^2}{2} \varphi^2 + \frac{\ell^2}{8} [(\partial \varphi)^4 - m^4 \varphi^4] + O(\ell^4)$$
on-shell amplitudes match at
given order in ℓ up to finite
polynomials in $\partial \varphi$ and $m\varphi$ at
next-higher order in ℓ .
 Λ Corrections remove on-shell
the quadrat. divergences, but
 $\frac{1}{637}$ this.

result:

CFT32, + "TeV-scale copies" SM flow D gravitz: no space-time CFT31 CFT, but (gravitationally - diesses

=) • EW scale is fundamental non-gravitational scale! • No heavy how-grav. scales above EW, only gravity it self ... ~ nature is "haturally tuned" (ii) "finite naturalness": A arrives at the same eff. proposal as (i) M: W, Z, top wass-scales Je: revormalization scale =) rule ! us kens vongras. scales at »TeV, and ben bop all

quadratic div. (keep only logs + time)

N leads for neutrino see-saw to RH V-masses ≤ 10⁷ heV; and for R.g. minimal formion DM, Scalar singlet DM, KSV7 asions to new states at a lew TeV ...

(iii) applies atrone of (i) 8(ii) to SM, but then ignoves asguments about gravity in (i) (and much other literature !) and tries to work out implications of assuming a &D CFIgravily in the UV: don't start with GR + SM, but $S = \int d^{4}x \sqrt{-y} \left[\frac{R^{2}}{6f_{o}^{2}} + \frac{\frac{1}{3}R^{2}R_{\mu\nu}^{2}}{f_{2}^{2}} + \frac{1}{2}\int_{SM}^{2} \frac{1}{3}R_{BSM}^{2} \right]$ $\mathcal{L}_{SM} = -\frac{F_{uv}}{4g^2} + i\overline{\Psi}\mathcal{B}\Psi + |D_uH|^2 - (\gamma H \Psi \Psi + h.c.)$

 $-\lambda_{H}$ $|H|^{4} - \xi_{H}$ $|H|^{2}R$

$$\mathcal{Z}_{BSM} = [D_{\mu}S]^{2} - \lambda_{S}|S|^{4} + \lambda_{NS}[H]^{2}|S|^{2} - \xi_{S}|S|^{2}R$$

Note: on simply connected
Space-time all combinations
of
$$R^2$$
, $R_{\mu\nu}$, $R_{\mu\nugo}^2$ are
equivalent to:
 $W_{\mu\nugo}^2 = \frac{1}{2}R_{\mu\nugo}^2 - R_{\mu\nu}^2 + \frac{1}{6}R^2$
 $= R_{\mu\nu}^2 - \frac{1}{3}R^2$

BRST quantize & use dim-reg. (-> neglect all quadratic & quartic divergences, keep logs + finite => for gauge fields, only diagrams from gravity;

The kny + ln $\frac{\Lambda}{\mu}$ - len $\frac{\Lambda}{\mu}$ =) (inite, $\beta_{V}^{\text{full}} = \beta_{V}^{\text{SM}}$ gravitational RGE: $(4\pi)^2 \frac{df_2^2}{dl_m\mu} = -f_2^4 \cdot \left(\frac{133}{10} + \frac{N_V}{5} + \frac{N_f}{20} + \frac{N_s}{50}\right)$ always asymptotically free $(4\pi)^{2} \cdot \frac{df_{o}^{2}}{dlm_{\mu}} = \frac{5}{3}f_{2}^{4} + 5f_{2}^{2}f_{o}^{2} + \frac{5}{6}f_{o}^{4} + \frac{1}{12}f_{o}^{4} \cdot (\delta_{ab} + 6\xi_{ab})^{2} + \frac{1}{12}f_{o}^{4} \cdot (\delta_{ab} + 6\xi_{ab})^{2}$ =1 for asymptotically free only, if $f_{0}^{2} < 0$

=) Starobinsky scalar
$$\chi$$
 has
mass $M_0^2 < 0$ (could use χ
as inflator...)
dynamical generation of Mp :
 Λ vacuum for S
e.o.m.: $\frac{\partial V}{\partial S} + \frac{1}{2} \frac{\partial f}{\partial S} \cdot R = 0$
 $-\frac{1}{2} f(S) \cdot R$ in χ
trace of gravitational field og.s:
 $f \cdot R + 4 \cdot V = O(R^2/f_{02}^2)$
(Einstein gravity: $R = -4T = -4V$)
 $=) \frac{\partial V}{\partial S} - \frac{2}{F} \frac{\partial f}{\partial S} V = 0$

(near flat space:
$$R^{2} \ll R$$
)
Same as: $\frac{\partial V_{E}}{\partial S} = 0$, $V_{E} = \frac{V}{f^{2}}$
Einstein frame scalar polarbial
 $S = \int d^{4}x \sqrt{-g} \left[\frac{1}{2} |\partial S|^{2} - \frac{1}{2} f R - V \right]$
 $-) S = \int d^{4}x \sqrt{-g} \left[\frac{-1}{2} |\partial S|^{2} - \frac{V_{E}}{2} |\partial S|^{2} - V_{E} \right]$
have we have approx.:
 $V(S) = \lambda(\overline{u} \approx S) \frac{S^{4}}{F}$
 $f(S) = \frac{1}{5} (\overline{u} \approx S) - S^{2}$
 $=) V_{E} = \frac{1}{4} \cdot \frac{\lambda_{S}(S)}{\frac{2}{5}(S)}$
 $=) 4 \frac{\partial V_{E}}{\partial S} = \frac{\partial \lambda_{S}}{\partial S} \cdot \frac{1}{5} - \frac{2\lambda_{S}}{2} \cdot \frac{\partial S_{S}}{\partial S}$

 $\frac{1}{1} \beta_{\lambda_{s}} \cdot \frac{1}{s \cdot \overline{s}_{s}^{2}} - \beta_{\overline{s}_{s}} \cdot \frac{2\lambda_{s}}{s \cdot \overline{s}_{s}^{3}}$ $= \frac{\beta_{\lambda s}}{\lambda s} - 2 \cdot \frac{\beta_{\overline{s}s}}{\overline{s}s} = 0$ differt vacuum eq. Heren that from non-gravitational Coleman - Geinberg potential ! So, agravity can generate Mp and lever c.c. swall if: $(\lambda_{s}(s) = 0 \quad (1)$ $\begin{cases} \beta_{\lambda_s}(s) = 0 \quad (2) \\ \zeta_s(s) s^2 = M_p^2 \quad (3) \end{cases}$

(1), (2) approximately (ulfillable (verdel dependent), see e.g. SM Higgs : $\lambda_{h}(h), \beta_{\lambda_{h}}(h)$ can vanish at scales close to each other ... -) but ninun C.C. at Mo Mp, Mo ZeV ~ 1060 too lage, still read land scape ... 6 get (1), (2) approx., S

noods to be charged under other rector:

e.g. 2nd SM copy with Z2 - Symme with our SM

=) LHS loop-garaded =) M's keavy, fers orders of magnitude below Mp =) Min gets logcontribution from agravely sector (& functions)

(ival vote: Course e.g. Sas inflaton -> V(s) = 2;5 * \Rightarrow $V_E(s) \sim \lambda_s = coust.$ Since at 1-loop: $\lambda_s(s) \sim las s$ =) V(s)~ s*lus $=) V_{E}(s) = \frac{s^{4}}{f^{2}} \ln s \sim \ln s$ S~e^{C·SE} ->VE~SF

monomial, not Staplinsky =) r 20.1 custerd of 0.001 all of this neglects main problems: · les quarteres 4D CFT of gravely levasu ! · all quadratic gravity theories except f(R) Stelle contain a Spin-2 abost! How to make (1977) ghost! Sense of Hat?